Back to Search Start Over

Denoising application for electron spectrometer in laser-driven ion acceleration using a Simulation-supervised Learning based CDAE

Authors :
Kotaro Kondo
Mamiko Nishiuchi
Nicholas P. Dover
Masaki Kando
Kiminori Kondo
Hazel Lowe
Yukinobu Watanabe
H. Sakaki
Tatsuhiko Miyatake
Keiichiro Shiokawa
Akira Kon
Source :
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 999:165227
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Real experimental measurements in high-radiation environments often suffer from a high-flux of background noise which can limit the retrieval of the underlying signal. It is important to have an effective method to properly remove unwanted noise from measurement images. Machine learning methods using a multilayer neural network (deep learning) have been shown to be effective for extracting features from images. However, the efficacy of such methods is often restricted by a lack of high-quality training data. Here, we demonstrate the application for noise removal by performing simulations to generate virtual training data for a denoising deep-learning model. We first apply the model to simulations of an electron spectrometer measuring the energy spectra of electron beams accelerated from the interaction of an intense laser with a thin foil. By considering the chi-squared test and image test-indexes, namely the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), we found our method to be highly effective. We then used the trained model to denoise real experimental measurements of the electron beam spectra from experiments performed at a state-of-the-art high-power laser facility. This application is offered as a new method for effectively removing noise from experimental data in high-flux radiation background environment.

Details

ISSN :
01689002
Volume :
999
Database :
OpenAIRE
Journal :
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Accession number :
edsair.doi...........ca0cf7abccc0b3ce870e4f07563421a6
Full Text :
https://doi.org/10.1016/j.nima.2021.165227