Back to Search
Start Over
Bayesian multiscale analysis for time series data
- Source :
- Computational Statistics & Data Analysis. 51:1719-1730
- Publication Year :
- 2006
- Publisher :
- Elsevier BV, 2006.
-
Abstract
- A recently proposed Bayesian multiscale tool for exploratory analysis of time series data is reconsidered and umerous important improvements are suggested. The improvements are in the model itself, the algorithms to analyse it, and how to display the results. The consequence is that exact results can be obtained in real time using only a tiny fraction of the CPU time previously needed to get approximate results. Analysis of both real and synthetic data are given to illustrate our new approach. Multiscale analysis for time series data is a useful tool in applied time series analysis, and with the new model and algorithms, it is also possible to do such analysis in real time.
- Subjects :
- Statistics and Probability
business.industry
Computer science
Applied Mathematics
Bayesian probability
Exploratory analysis
Synthetic data
Computational Mathematics
Computational Theory and Mathematics
Statistical inference
Fraction (mathematics)
Central processing unit
Artificial intelligence
Time series
business
Algorithm
Sparse matrix
Subjects
Details
- ISSN :
- 01679473
- Volume :
- 51
- Database :
- OpenAIRE
- Journal :
- Computational Statistics & Data Analysis
- Accession number :
- edsair.doi...........ccd79579f6e800296db33de3780279f1