Back to Search Start Over

Proxy modelling for multi-well simulations: enabling identification of major input variables and reduced computation time over Monte Carlo sampling

Authors :
Diane Donovan
Iain Rodger
Mark Reilly
Suzanne Hurter
Ryan Blackmore
Thomas A. McCourt
Bevan Thompson
Source :
The APPEA Journal. 59:444
Publication Year :
2019
Publisher :
CSIRO Publishing, 2019.

Abstract

The petroleum industry uses high level dynamic simulations applied to geocellular models to guide forecasts of oil, gas and water production. Uncertainty in model choice and input variable selection is often addressed through large numbers of computationally slow Monte Carlo simulations designed around physics based models. Here, an alternate approach is proposed, which uses a relatively small amount of data and a reduced number of simulations of the high level physics model to train a fast (to evaluate) proxy or surrogate model based on a Polynomial Chaos Expansion. We give details of the theory and incorporated techniques, which significantly increase flexibility. Input variables (e.g. cell-by-cell variations in porosity and permeability) are sampled from unknown probability distributions and sensitivity analysis is based on low level proxy models. The theory is tested by developing proxy models to predict total gas production from a five-spot well configuration in the Hermitage area that taps into the Walloon Coal Measures of the Surat Basin in Queensland. Synthetic training data is simulated using commercial dynamic simulation software based on a high level physics model.

Details

ISSN :
13264966
Volume :
59
Database :
OpenAIRE
Journal :
The APPEA Journal
Accession number :
edsair.doi...........cce657448626505253ed393df4db51fd
Full Text :
https://doi.org/10.1071/aj18065