Back to Search
Start Over
Optically detected magnetic resonance of silicon vacancies in 4H-SiC at elevated temperatures toward magnetic sensing under harsh environments
- Source :
- Journal of Applied Physics. 133:154402
- Publication Year :
- 2023
- Publisher :
- AIP Publishing, 2023.
-
Abstract
- Negatively charged silicon vacancy (VSi−) defects in silicon carbide are expected to be used for magnetic sensors under harsh environments, such as space and underground due to their structural stability and potential for high-fidelity spin manipulation at high temperatures. To realize VSi− based magnetic sensors operating at high temperatures, the temperature dependence of optically detected magnetic resonance (ODMR) in the ground states of VSi− defects, which is the basic principle of magnetic sensing, should be systematically understood. In this work, we demonstrate the potential of VSi− magnetic sensors up to at least 591 K by showing the ODMR spectra with different temperatures. Furthermore, the resonance frequency of the ground level was independent of temperature, indicating the potential for calibration-free magnetic sensors in temperature-varying environments. We also characterize the concentration of VSi− defects formed by electron irradiation and clarify the relationship of magnetic sensing sensitivity to VSi− concentration and find that the sensing sensitivity increases linearly with VSi− concentration up to at least 6.0 × 1016 cm−3. The magnetic sensitivity at a temperature above 549 K was reduced by half as compared to that at 300 K. The results pave the way for the use of a highly sensitive VSi−-based magnetic sensor under harsh environments.
- Subjects :
- General Physics and Astronomy
Subjects
Details
- ISSN :
- 10897550 and 00218979
- Volume :
- 133
- Database :
- OpenAIRE
- Journal :
- Journal of Applied Physics
- Accession number :
- edsair.doi...........cd0214b92740eb9f07e955ecd9bf07a8
- Full Text :
- https://doi.org/10.1063/5.0139801