Back to Search
Start Over
Detection and classification of pole-like road objects from mobile LiDAR data in motorway environment
- Source :
- Optics & Laser Technology. 97:272-283
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- Mobile LiDAR Scanning (MLS) can collect 3-dimensional (3D) road and road-related geospatial information accurately and efficiently. Pole-like objects located in road environment are important street furniture and they are necessary information in road inventory and road mapping. The automatic detection and classification of pole-like road objects from mobile LiDAR data can greatly reduce the cost and improve the efficiency. This paper provides a complete workflow for the detection and classification of pole-like road objects from mobile LiDAR data in motorway environment. The major workflow includes three steps: data preprocessing, pole-like road objects detection and pole-like road objects classification. In data preprocessing step, ground points are removed by an automatic ground filtering algorithm, and then off-ground points are clustered into segments and the overlapped segments containing pole-like road objects are further separated through an iterative min-cut based segmentation approach. In detection step, filters utilizing both prior and shape information are used to detect the target objects. In classification step, features of objects are calculated and classified using Random Forest classifier. Our method was tested on two datasets scanned in motorway environment, and the results showed that the Matthews correlation coefficient of the two datasets in detection step was 93.7% and 95.9% respectively and the overall accuracy of the two datasets in classification step was 96.5% and 97.9% respectively.
- Subjects :
- Geospatial analysis
010504 meteorology & atmospheric sciences
Computer science
business.industry
0211 other engineering and technologies
02 engineering and technology
computer.software_genre
Matthews correlation coefficient
01 natural sciences
Atomic and Molecular Physics, and Optics
Electronic, Optical and Magnetic Materials
Random forest
Workflow
Mobile lidar
Street furniture
Segmentation
Computer vision
Data pre-processing
Artificial intelligence
Electrical and Electronic Engineering
business
computer
021101 geological & geomatics engineering
0105 earth and related environmental sciences
Remote sensing
Subjects
Details
- ISSN :
- 00303992
- Volume :
- 97
- Database :
- OpenAIRE
- Journal :
- Optics & Laser Technology
- Accession number :
- edsair.doi...........d016566248fd342ebae79e1e1595659f
- Full Text :
- https://doi.org/10.1016/j.optlastec.2017.06.015