Back to Search Start Over

Syzygies and Diagonal Resolutions for Dihedral Groups

Authors :
F. E. A. Johnson
Source :
Communications in Algebra. 44:2034-2047
Publication Year :
2016
Publisher :
Informa UK Limited, 2016.

Abstract

Let G be a finite group with integral group ring Λ =Z[G]. The syzygies Ωr(Z) are the stable classes of the intermediate modules in a free Λ-resolution of the trivial module. They are of significance in the cohomology theory of G via the “co-represention theorem” Hr(G, N) = Hom𝒟er(Ωr(Z), N). We describe the Ωr(Z) explicitly for the dihedral groups D4n+2, so allowing the construction of free resolutions whose differentials are diagonal matrices over Λ.

Details

ISSN :
15324125 and 00927872
Volume :
44
Database :
OpenAIRE
Journal :
Communications in Algebra
Accession number :
edsair.doi...........d039346b296a982c66f296422b8eb733
Full Text :
https://doi.org/10.1080/00927872.2015.1027372