Back to Search
Start Over
Passive Force–Displacement Behaviour of GRS Bridge Abutments
- Source :
- International Journal of Geosynthetics and Ground Engineering. 4
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- Many bridge abutments suffered severe damages due to pounding of superstructure elements of the bridge during seismic excitation. Collision of the girder is resisted by passive pressures mobilised in the backfill soils. Seismic load on the bridge structure causes the bridge abutments to undergo lateral translation (Δ) and rotation. The present study focuses on the evaluation of passive force (Pp) developed in the reinforced backfills of the geosynthetic-reinforced soil (GRS) bridge abutments. The GRS abutments of nine configurations with three different geogrid spacing and three different geogrid lengths are modelled using finite element (FE) approach under lateral push. Hypoplastic soil constitutive model with inter-granular strain concept is used to model the soil behaviour. User material subroutine, VUMAT is developed to simulate the soil behaviour in Abaqus. The maximum passive resistance (Pp,ult) increases by 12% in the GRS abutments with closer geogrid spacing.
- Subjects :
- Polymers and Plastics
Passive resistance
Seismic loading
Constitutive equation
0211 other engineering and technologies
020101 civil engineering
02 engineering and technology
Rotation
Bridge (interpersonal)
Finite element method
0201 civil engineering
Geogrid
Girder
Geotechnical engineering
Geology
021101 geological & geomatics engineering
Civil and Structural Engineering
Subjects
Details
- ISSN :
- 21999279 and 21999260
- Volume :
- 4
- Database :
- OpenAIRE
- Journal :
- International Journal of Geosynthetics and Ground Engineering
- Accession number :
- edsair.doi...........d086db2cf7fdf9db345eb20290bf69e0