Back to Search Start Over

Can sulphur improve the nutrient uptake, partitioning, and seed yield of sesame?

Authors :
Atta Mohi Ud Din
Tehseen Ahmad Meraj
Obaid Afzal
Mukhtar Ahmed
Muhammad Aqeel Aslam
Muhammad Ali Raza
Ahmed M. S. Kheir
Shakeel Ahmad
Muhammad Jawad Hassan
Ghulam Qadir
Imran Khan
Muhammad Zeeshan Mehmood
Source :
Arabian Journal of Geosciences. 14
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Sulphur (S) is considered to improve the nutrient uptake of plants due to its synergistic relationship with other nutrients. This could ultimately enhance the seed yield of oilseed crops. However, there is limited quantitative information on nutrient uptake, distribution, and its associated impacts on seed yield of sesame under the S application. Thus, a two-year field study (2018 and 2019) was conducted to assess the impacts of different S treatments (S0 = Control, S20 = 20, S40 = 40, and S60 = 60 kg ha−1) on total dry matter production, nitrogen, phosphorus, potassium, S uptake and distribution at the mid-bloom stage and physiological maturity. Furthermore, treatment impacts were studied on the number of capsules per plant, number of seeds per capsule, thousand seed weight, and seed yield at physiological maturity in sesame. Compared to S0, over the years, treatment S40 significantly increased the total uptake of nitrogen, phosphorus, potassium, and S (by 13, 22, 11% and 16%, respectively) at physiological maturity, while their distribution by 13, 36, 14, and 24% (in leaves), 12, 15, 11, and 15% (in stems), 15, 42, 18, and 10% (in capsules), and 14, 22, 9, and 15% (in seeds), respectively. Enhanced nutrient uptake and distribution in treatment S40 improved the total biomass accumulation (by 28%) and distribution in leaves (by 34%), stems (by 27%), capsules (by 26%), and seeds (by 28%), at physiological maturity, as compared to S0. Treatment S40 increased the number of capsules per plant (by 13%), number of seeds per capsule (by 11%), and thousand seed weight (by 6%), compared to S0. Furthermore, over the years, relative to control, sesame under S40 had a higher seed yield by 28% and enhanced the net economic returns by 44%. Thus, our results suggest that optimum S level at the time of sowing improves the nutrient uptake and distribution during the plant lifecycle, which ultimately enhances total dry matter accumulation, seed yield, and net productivity of sesame.

Details

ISSN :
18667538 and 18667511
Volume :
14
Database :
OpenAIRE
Journal :
Arabian Journal of Geosciences
Accession number :
edsair.doi...........d108fb7ba09442688298ab3ca9031e6d