Back to Search Start Over

Semi-quantitative Analysis of the UV-responsive Behavior of Anisotropic Phase Constructed by Gemini Surfactant 12-3-12·2Br− and trans-ortho-Methoxycinnamate

Authors :
Qizhou Chen
Wenxiu Liu
Yazhuo Shang
Hongni Teng
Honglai Liu
Source :
Colloids and Surfaces A: Physicochemical and Engineering Aspects. 605:125348
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Photo-responsive materials with adjustable self-assembly morphologies and tunable rheological properties have attracted widespread interests of researchers in recent years because of their potential applications in controlled release, microfluidics, sensors, and so forth. In this paper, a series of UV-sensitive anisotropic fluids were prepared by combining trans-ortho-methoxycinnamate (trans-OMCA, in its salts form) and cationic Gemini surfactant propanediyl-α, ω-bis (N-dodecyl-N, N-dimethylammonium bromide) (12-3-12·2Br−) based on the research of self-assembly behaviors of the mixed system. The photo-responsive behaviors of anisotropic fluid formed in 12-3-12·2Br−/trans-OMCA/H2O system including macroscopic phase transition, microstructure transformation, rheological property, molecular interaction and isomerization degree of trans-OMCA were investigated by various techniques including UV-vis spectrum, rheology measurement, 1H NMR and 2D NOESY spectrum, transmission electron microscopy (TEM), polarized optical microscopy (POM), and dynamic light scattering (DLS). It is proved that upon exposure to UV-light, ortho-methoxycinnamate (OMCA) undergoes a photo-isomerization from trans form to cis form, which results in geometry transitions of the 12-3-12·2Br−/OMCA aggregates accompanied by a continuous phase separation and combination macroscopically; both proportion and concentration of OMCA in anisotropic solution have great influences on the photo-responsive behaviors of the system including the durations of UV irradiation and isomerization degrees of OMCA at the phase transition points. The photo-responsiveness of this smart fluids and the quantitative analysis are expected to provide reference for academic research or practical application in the fields of biomedicine, soft matters, food engineering and sunscreen.

Details

ISSN :
09277757
Volume :
605
Database :
OpenAIRE
Journal :
Colloids and Surfaces A: Physicochemical and Engineering Aspects
Accession number :
edsair.doi...........d14202cc181135de0abceb56fdb9cac1
Full Text :
https://doi.org/10.1016/j.colsurfa.2020.125348