Back to Search
Start Over
Determinant formula and a realization for the Lie algebra W (2, 2)
- Source :
- Science China Mathematics. 61:685-694
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- In this paper, an explicit determinant formula is given for the Verma modules over the Lie algebra $W(2,2)$. We construct a natural realization of a certain vaccum module for the algebra $W(2,2)$ via the Weyl vertex algebra. We also describe several results including the irreducibility, characters and the descending filtrations of submodules for the Verma module over the algebra $W(2,2)$.
- Subjects :
- Pure mathematics
General Mathematics
010102 general mathematics
Current algebra
Universal enveloping algebra
01 natural sciences
Affine Lie algebra
Graded Lie algebra
Lie conformal algebra
Filtered algebra
0103 physical sciences
Algebra representation
Cellular algebra
0101 mathematics
Mathematics::Representation Theory
010306 general physics
Mathematics
Subjects
Details
- ISSN :
- 18691862 and 16747283
- Volume :
- 61
- Database :
- OpenAIRE
- Journal :
- Science China Mathematics
- Accession number :
- edsair.doi...........d20a49dac9b900b9b5d7d2ad2c41df8c
- Full Text :
- https://doi.org/10.1007/s11425-016-9046-1