Back to Search Start Over

Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain

Authors :
Herman Höfte
Delphine Effroy
Jean-François Thibault
Grégory Mouille
Lesley McCartney
Alan Marchant
Hoai Nam Truong
Kian Hématy
Virginie Gaudon
Céline Cavelier
Cathlene Eland
Marie-Christine Ralet
Source :
The Plant Journal. 50:605-614
Publication Year :
2007
Publisher :
Wiley, 2007.

Abstract

Pectins are a family of complex cell-wall polysaccharides, the biosynthesis of which remains poorly understood. We identified dwarf mutants with reduced cell adhesion at a novel locus, QUASIMODO2 (QUA2). qua2-1 showed a 50% reduction in homogalacturonan (HG) content compared with the wild type, without affecting other cell-wall polysaccharides. The remaining HG in qua2-1 showed an unaltered degree of methylesterification. Positional cloning and GFP fusions showed that QUA2, consistent with a role in HG synthesis, encodes a Golgi-localized protein. In contrast to QUA1, another Golgi-localized protein required for HG-synthesis, QUA2 does not show sequence similarity to glycosyltransferases, but instead contains a putative methyltransferase (MT) domain. The Arabidopsis genome encodes 29 QUA2-related proteins. Interestingly, the transcript profiles of QUA1 and QUA2 are correlated and other pairs of QUA1 and QUA2 homologues with correlated transcript profiles can be identified. Together, the results lead to the hypothesis that QUA2 is a pectin MT, and that polymerization and methylation of homogalacturonan are interdependent reactions.

Details

ISSN :
1365313X and 09607412
Volume :
50
Database :
OpenAIRE
Journal :
The Plant Journal
Accession number :
edsair.doi...........d2314fd0e664f3c285273b84e802e21e
Full Text :
https://doi.org/10.1111/j.1365-313x.2007.03086.x