Back to Search Start Over

Soil Heat Flux Plates: Heat Flow Distortion and Thermal Contact Resistance

Authors :
Robert Horton
Thomas J. Sauer
Tyson Ochsner
Source :
Agronomy Journal. 99:304-310
Publication Year :
2007
Publisher :
Wiley, 2007.

Abstract

Persistent concern regarding surface energy balance closure encourages increased scrutiny of potential sources of error. Laboratory and field experiments addressed heat flow distortion and thermal contact resistance errors during measurement of soil heat flux (G) using the flux plate technique. Steady-state, one-dimensional heat flow experiments determined flux plate thermal conductivities (λ m ) and measured the effect of air gaps and thermal heat sink coatings on plate performance. Use of measured instead of manufacturer-specified λ m and plate dimensions in a heat flow distortion correction improved the consistency but not the average disagreement between imposed sand G and corrected plate heat flux density (G m ). Consistent underestimates of G in dry sand by 20 to 25% after heat flow distortion correction was attributed to thermal contact resistance effects. A convex air gap 0.1 to 1.32 mm thick across 5.9% of the plate face area reduced G m by up to 9.7%. A thin layer of a thermal heat sink compound with λ 0.18 W m -1 K -1 greater than the plate λ m (1.0 W m -1 K -1 ) did not increase G m in a day soil but Increased G m by ∼6% in quartz sand. A 6.5% increase in G m was also observed for plates treated with the same heat sink compound in a silt loam soil under field conditions. Thermal contact resistance errors are probably

Details

ISSN :
14350645 and 00021962
Volume :
99
Database :
OpenAIRE
Journal :
Agronomy Journal
Accession number :
edsair.doi...........d4045a6bc379f1f8fe3ad0d4d88208ff
Full Text :
https://doi.org/10.2134/agronj2005.0038s