Back to Search Start Over

Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity

Authors :
Yiqiang Sun
Lifeng Hang
Yue Li
Cuncheng Li
Yu Bai
Xinyang Li
Tao Zhang
Weiping Cai
Dilong Liu
Xianjun Lyu
Source :
Journal of Materials Chemistry A. 6:13735-13742
Publication Year :
2018
Publisher :
Royal Society of Chemistry (RSC), 2018.

Abstract

We develop a facile laser-irradiation induced alloying and subsequent chemical etching method to prepare spongy AuAgPt alloy nanospheres (spongy AuAgPt NSs) with high-index facets, rich grain boundaries and subtle lattice distortion as highly active electrooxidation catalysts. The key to preparing such spongy AuAgPt NSs for their excellent electrocatalytic activity is the alloying process induced by laser irradiation, forming rich grain boundaries and subtle lattice distortion due to the quick fusion and quenching process, which is completely different from traditional thermal annealing alloying. After chemical dealloying, the nanopores were formed and a large amount of high-index facets were successfully introduced into the spongy AuAgPt NSs. The spongy AuAgPt NSs exhibited superior methanol oxidation reaction (MOR) activity (1.62 A mgPt−1), which was 5.1 times higher than that of Pt black (0.32 A mgPt−1), and they also showed outstanding stability for the MOR after long-term cycles. The enhanced catalytic activity could be attributed to the abundant high-index facets, grain boundaries and subtle lattice distortion of spongy AuAgPt NSs formed in this laser-irradiation induced alloying and subsequent chemical etching process. The present work provides a new efficient strategy for the rational design of 3D spongy electrocatalysts with both high activity and improved durability for promising applications in electrocatalysis, biosensing, energy conversion, etc.

Details

ISSN :
20507496 and 20507488
Volume :
6
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A
Accession number :
edsair.doi...........d44ffa01c430522ed4806be5031e2589
Full Text :
https://doi.org/10.1039/c8ta04087g