Back to Search Start Over

Data from An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma

Authors :
Kenneth H. Shain
Mark B. Meads
Eduardo Sontag
Robert Gillies
Robert Gatenby
James Greene
William Dalton
Dmitri Rebatchouk
Lia Perez
Rachid Baz
Christopher Cubitt
Lu Chen
Dung-Tsa Chen
Jinming Song
Tuan Nguyen
Aunshka Collins
Timothy Jacobson
Allison Distler
Praneeth Sudalagunta
Maria C. Silva
Ariosto Silva
Publication Year :
2023
Publisher :
American Association for Cancer Research (AACR), 2023.

Abstract

Multiple myeloma remains treatable but incurable. Despite a growing armamentarium of effective agents, choice of therapy, especially in relapse, still relies almost exclusively on clinical acumen. We have developed a system, Ex vivo Mathematical Myeloma Advisor (EMMA), consisting of patient-specific mathematical models parameterized by an ex vivo assay that reverse engineers the intensity and heterogeneity of chemosensitivity of primary cells from multiple myeloma patients, allowing us to predict clinical response to up to 31 drugs within 5 days after bone marrow biopsy. From a cohort of 52 multiple myeloma patients, EMMA correctly classified 96% as responders/nonresponders and correctly classified 79% according to International Myeloma Working Group stratification of level of response. We also observed a significant correlation between predicted and actual tumor burden measurements (Pearson r = 0.5658, P < 0.0001). Preliminary estimates indicate that, among the patients enrolled in this study, 60% were treated with at least one ineffective agent from their therapy combination regimen, whereas 30% would have responded better if treated with another available drug or combination. Two in silico clinical trials with experimental agents ricolinostat and venetoclax, in a cohort of 19 multiple myeloma patient samples, yielded consistent results with recent phase I/II trials, suggesting that EMMA is a feasible platform for estimating clinical efficacy of drugs and inclusion criteria screening. This unique platform, specifically designed to predict therapeutic response in multiple myeloma patients within a clinically actionable time frame, has shown high predictive accuracy in patients treated with combinations of different classes of drugs. The accuracy, reproducibility, short turnaround time, and high-throughput potential of this platform demonstrate EMMA's promise as a decision support system for therapeutic management of multiple myeloma. Cancer Res; 77(12); 3336–51. ©2017 AACR.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........d4c8ea1e40acfd2191f194915500445e