Back to Search
Start Over
Synthesis, Characterization, and Adsorptive Properties of Magnetic Cellulose Nanocomposites for Arsenic Removal
- Source :
- Water, Air, & Soil Pollution. 225
- Publication Year :
- 2014
- Publisher :
- Springer Science and Business Media LLC, 2014.
-
Abstract
- In this study, the magnetic cellulose nanomaterials, containing magnetic nanoscale zerovalent iron (nZVI) and cellulose, were prepared by a novel reduction method and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). The XRD and XPS results demonstrated the formation of zerovalent iron nanoparticles in the nanocomposite materials. With a saturation magnetization of 57.2 emu g−1, the cellulose@nZVI composites could be easily separated from solutions in 30 s through the external magnetic field. We investigated the adsorption performance of the magnetic cellulose nanomaterials for As(III) removal from aqueous solutions. The experimental results showed that arsenite adsorption followed the pseudo-second-order kinetic model and Langmuir isotherm model. A maximum removal of 99.27 % was observed for an initial concentration 10 mg L−1, at pH 8.0, and an adsorbent dose of 1.0 g L−1. Considering the high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the cellulose@nZVI composites were expected to be an efficient magnetic adsorbent for arsenic removal from aqueous solutions.
- Subjects :
- Zerovalent iron
Environmental Engineering
Nanocomposite
Materials science
Aqueous solution
Ecological Modeling
Inorganic chemistry
Langmuir adsorption model
equipment and supplies
Pollution
Nanomaterials
chemistry.chemical_compound
symbols.namesake
Adsorption
chemistry
Chemical engineering
X-ray photoelectron spectroscopy
symbols
Environmental Chemistry
Cellulose
human activities
Water Science and Technology
Subjects
Details
- ISSN :
- 15732932 and 00496979
- Volume :
- 225
- Database :
- OpenAIRE
- Journal :
- Water, Air, & Soil Pollution
- Accession number :
- edsair.doi...........d589a8d7db9268a1d2f9783bc951d3b4
- Full Text :
- https://doi.org/10.1007/s11270-014-1945-6