Back to Search Start Over

Experimental and numerical study of stratification and solidification/melting behaviors

Authors :
Yoshiaki Oka
Masahiro Furuya
Gen Li
Source :
Nuclear Engineering and Design. 272:109-117
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

Given the severe accident of a light water reactor (LWR), stratification and solidification/melting are important phenomena in melt corium behavior within the reactor lower head, influencing the decay heat distribution and ablation of penetration tube and vessel wall. Numerical calculation is a necessary and effective approach for mechanistic study of local melt corium behavior. In this study, the improved moving particle semi-implicit (MPS) method was applied for investigating the stratification and solidification/melting phenomena. The implicit viscous term calculation technique and stability improvement technique were adopted to enable MPS to simulate the stratification process of materials with high viscosity in phase transition stage. The solid–liquid phase transition model was also coupled with MPS method. The validation experiment was carried out with low-melting-point metal tin and NeoSK-SALT. The layer configurations and temperature profiles obtained from MPS calculation showed good agreement with the experimental results. Meanwhile, the calculation results indicated that the material freezing behavior could affect the layer formation, and the layer configurations also significantly influenced the temperature profiles and heat flux distributions. The present results demonstrated that MPS method has the capacity to understand the local melt behavior in detail that is relevant to stratification and phase transition.

Details

ISSN :
00295493
Volume :
272
Database :
OpenAIRE
Journal :
Nuclear Engineering and Design
Accession number :
edsair.doi...........d59aba7d7ee028c90c8eb30ec79f6291
Full Text :
https://doi.org/10.1016/j.nucengdes.2014.02.023