Back to Search
Start Over
Experimental and numerical study of stratification and solidification/melting behaviors
- Source :
- Nuclear Engineering and Design. 272:109-117
- Publication Year :
- 2014
- Publisher :
- Elsevier BV, 2014.
-
Abstract
- Given the severe accident of a light water reactor (LWR), stratification and solidification/melting are important phenomena in melt corium behavior within the reactor lower head, influencing the decay heat distribution and ablation of penetration tube and vessel wall. Numerical calculation is a necessary and effective approach for mechanistic study of local melt corium behavior. In this study, the improved moving particle semi-implicit (MPS) method was applied for investigating the stratification and solidification/melting phenomena. The implicit viscous term calculation technique and stability improvement technique were adopted to enable MPS to simulate the stratification process of materials with high viscosity in phase transition stage. The solid–liquid phase transition model was also coupled with MPS method. The validation experiment was carried out with low-melting-point metal tin and NeoSK-SALT. The layer configurations and temperature profiles obtained from MPS calculation showed good agreement with the experimental results. Meanwhile, the calculation results indicated that the material freezing behavior could affect the layer formation, and the layer configurations also significantly influenced the temperature profiles and heat flux distributions. The present results demonstrated that MPS method has the capacity to understand the local melt behavior in detail that is relevant to stratification and phase transition.
- Subjects :
- Nuclear and High Energy Physics
Phase transition
Materials science
Mechanical Engineering
Stratification (water)
Thermodynamics
chemistry.chemical_element
Penetration (firestop)
Corium
Nuclear Energy and Engineering
Heat flux
chemistry
General Materials Science
Light-water reactor
Decay heat
Safety, Risk, Reliability and Quality
Tin
Waste Management and Disposal
Subjects
Details
- ISSN :
- 00295493
- Volume :
- 272
- Database :
- OpenAIRE
- Journal :
- Nuclear Engineering and Design
- Accession number :
- edsair.doi...........d59aba7d7ee028c90c8eb30ec79f6291
- Full Text :
- https://doi.org/10.1016/j.nucengdes.2014.02.023