Back to Search
Start Over
Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle
- Source :
- Discrete & Continuous Dynamical Systems - A. 38:3387-3405
- Publication Year :
- 2018
- Publisher :
- American Institute of Mathematical Sciences (AIMS), 2018.
-
Abstract
- In this paper, we investigate Navier-Stokes-Oseen equation describing flows of incompressible viscous fluid passing a translating and rotating obstacle. The existence, uniqueness, and polynomial stability of bounded and almost periodic weak mild solutions to Navier-Stokes-Oseen equation in the solenoidal Lorentz space \begin{document}$ L^{3}_{σ, w} $\end{document} are shown. Moreover, we also prove the unique existence of time-local mild solutions to this equation in the solenoidal Lorentz spaces \begin{document}$ L^{3,q}_{σ} $\end{document} .
- Subjects :
- Polynomial (hyperelastic model)
Physics
Solenoidal vector field
Applied Mathematics
Lorentz transformation
010102 general mathematics
Mathematical analysis
Mathematics::Analysis of PDEs
01 natural sciences
Stability (probability)
Physics::Fluid Dynamics
010101 applied mathematics
symbols.namesake
Lorentz space
Obstacle
Bounded function
symbols
Discrete Mathematics and Combinatorics
Uniqueness
0101 mathematics
Analysis
Subjects
Details
- ISSN :
- 15535231
- Volume :
- 38
- Database :
- OpenAIRE
- Journal :
- Discrete & Continuous Dynamical Systems - A
- Accession number :
- edsair.doi...........d7024063b2d6eb2f7f4a6aa97454dc84
- Full Text :
- https://doi.org/10.3934/dcds.2018145