Back to Search Start Over

Effect of oxygen partial pressure on nonlinear optical and electrical properties of BNT–KNNG composite thin films

Authors :
Gyan Prakash Bharti
Srinivas Pattipaka
J. Pundareekam Goud
Dobbidi Pamu
Alika Khare
K. C. James Raju
Source :
Journal of Materials Science: Materials in Electronics. 31:2986-2996
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Composite thin films of 1–x [Bi0.5Na0.5TiO3] – x [K0.5Na0.5NbO3 + 1 wt% Gd2O3] (BNT–KNNG); (x = 0.01) have been deposited at various O2 pressures from 0.1 to 10 Pa by pulsed laser deposition, and their crystal structure, surface morphology, optical, dielectric, and ferroelectric properties were investigated. X-ray diffraction analysis of thin films deposited at 0.1 Pa revealed a single phase of BNT–KNNG and further (> 0.1 Pa), film crystallinity gradually increased with a rise in O2 pressure. The improvement in the refractive index and a reduction in optical bandgap are observed with O2 pressure and are estimated to be 2.28–2.42 and 4.08–3.65 eV, respectively. The third-order nonlinear optical coefficients estimated using the Z-scan technique are found to be enhanced with O2 pressure. The film deposited at 10 Pa exhibited a higher nonlinear refractive index (n2 = 6.188 × 10− 6 cm2/W) and a strong absorption coefficient (β = 1.043 cm/W). The temperature-dependent dielectric response displayed two structural phase transitions from rhombohedral to tetragonal phase at 165 oC and tetragonal to cubic phase at 298 oC. The enhanced dielectric (er = 411, tanδ = 0.156 @ 1 kHz), Microwave dielectric (er = 317 and tanδ = 0.0074 @ 10 GHz), and ferroelectric (Pr = 25.31 µC/cm2, EC = 42.62 kV/cm @ 1 kHz) properties with low leakage current are observed for the film deposited at 10 Pa which followed a space charge limited conduction behavior. The obtained microwave and nonlinear optical properties of BNT–KNNG composite films are suitable for tunable microwave and optical photonic device applications.

Details

ISSN :
1573482X and 09574522
Volume :
31
Database :
OpenAIRE
Journal :
Journal of Materials Science: Materials in Electronics
Accession number :
edsair.doi...........d70f75df818d1d67dbdbb4abc82f0290
Full Text :
https://doi.org/10.1007/s10854-019-02842-4