Back to Search Start Over

Deep Reinforcement Learning for UAV Navigation Through Massive MIMO Technique

Authors :
Hong Wang
Zhiguo Ding
Fumiyuki Adachi
Hongji Huang
Hikmet Sari
Yuchun Yang
Source :
IEEE Transactions on Vehicular Technology. 69:1117-1121
Publication Year :
2020
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2020.

Abstract

Unmanned aerial vehicles (UAVs) technique has been recognized as a promising solution in future wireless connectivity from the sky, and UAV navigation is one of the most significant open research problems, which has attracted wide interest in the research community. However, the current UAV navigation schemes are unable to capture the UAV motion and select the best UAV-ground links in real-time, and these weaknesses overwhelm the UAV navigation performance. To tackle these fundamental limitations, in this paper, we merge the state-of-the-art deep reinforcement learning with the UAV navigation through massive multiple-input-multiple-output (MIMO) technique. To be specific, we carefully design a deep Q-network (DQN) for optimizing the UAV navigation by selecting the optimal policy, and then we propose a learning mechanism for processing the DQN. The DQN is trained so that the agent is capable of making decisions based on the received signal strengths for navigating the UAVs with the aid of the powerful Q-learning. Simulation results are provided to corroborate the superiority of the proposed schemes in terms of the coverage and convergence compared with those of the other schemes.

Details

ISSN :
19399359 and 00189545
Volume :
69
Database :
OpenAIRE
Journal :
IEEE Transactions on Vehicular Technology
Accession number :
edsair.doi...........d77ae0813a97d15fb17190270b5a8981