Back to Search
Start Over
Timely detection of Pertussis outbreaks in Iran: The comparison performance of Wavelet-based outbreak detector, Exponential weighted moving average, and Poisson regression-based methods
- Publication Year :
- 2020
- Publisher :
- Research Square Platform LLC, 2020.
-
Abstract
- Background Early detection of outbreaks is very important for surveillance systems. Due to the importance of the subject and lack of similar studies in Iran, the aim of this study was to determine the performance of the Wavelet-Based Outbreak detection method)WOD(in detecting outbreaks and to compare its performance with Poisson regression-based model and Exponential weighted moving average (EWMA) using data of simulated pertussis outbreaks in Iran. Methods The data on suspected cases of pertussis from 25th February 2012 to 23rd March 2018 in Iran was used. The performance of the WOD (Daubechies 10 and Haar wavelets), Poisson regression-based method, and EWMA Compared in terms of timeliness and detection of outbreak days using the simulation of different outbreaks (literature-based and researcher-made outbreaks). The sensitivity, specificity, false alarm and false negative rate, positive and negative likelihood ratios, under ROC areas and median timeliness were used to assess the performance of the methods. Results In a literature-based outbreak simulation, the highest and lowest sensitivity, false negative in the detection of injected outbreaks were seen in Daubechies 10 (db10), with sensitivity 0.59 (0.56-0.62), and Haar wavelets with 0.57 (0.54-0.60). In the researcher-made outbreaks, the EWMA (K=0.5) with sensitivity 0.92 (0.90-0.94) had the best performance. About timeliness, the WOD methods showed the best performance in the early warning of the outbreak in both simulation approaches. Conclusions Performance of the WOD in the early alarming outbreaks was appropriate. However, it's better as the method was used along with other methods in public health surveillance systems.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........dc70345bcb95eae766ab81b2441b1621
- Full Text :
- https://doi.org/10.21203/rs.2.22567/v1