Back to Search
Start Over
An Ultra-Sensitive Lorentz Microwave Sensor for Detection of Low-Permittivity Gaseous Water States and Sub-Wavelength Biosamples
- Source :
- IEEE Sensors Journal. 21:26014-26022
- Publication Year :
- 2021
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2021.
-
Abstract
- The high sensitivity of Lorentz sensors comes from its narrowband resonant characteristics marked by rapid slope change of slope of its phase spectrum, a phenomenon known as Anomalous dispersion. Unlike conventional microwave resonant sensors which have a resonant amplitude, the Lorentz sensors also have unique signature in its phase spectra which adds a second degrees of freedom in detection and removes ambiguity in the identification of the resonant frequency. We demonstrate two sensing applications in which ultra-high sensitivity is required. In particular, we show that by exploiting the high electric field regions in Lorentz resonators detection of low density gaseous water states (steam) and sub-wavelength sized biomaterials is possible. The material sensing is performed by characterizing the resonant shifts in the frequency range of 1 to 2 GHz. Depending on the gaseous state concentrations, the dielectric constant of the detected steam lies between 1.04 and 1.6 GHz. The Lorentz resonator is shown to distinguish accurately between different sub-wavelength samples derived from different parts of chicken. We anticipate that the proposed sensor can be used in biosensing of cancerous cells and in detecting low-permittivity poisonous gaseous matter such as clear smoke, carbon mono oxide, methane and nitrogen.
Details
- ISSN :
- 23799153 and 1530437X
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- IEEE Sensors Journal
- Accession number :
- edsair.doi...........dea001d00753138be9f5fc5bd1d63e6d
- Full Text :
- https://doi.org/10.1109/jsen.2021.3114625