Back to Search Start Over

Promoting photocatalytic hydrogen evolution over the perovskite oxide Pr0.5(Ba0.5Sr0.5)0.5Co0.8Fe0.2O3 by plasmon-induced hot electron injection

Authors :
Meilin Liu
Jian-Gang Li
Chundong Wang
Yang Tian
Qimeng Zhang
Guo Hong
Shenglin Jiang
Huachuan Sun
Zhishan Li
Muk-Fung Yuen
Source :
Nanoscale. 12:18710-18720
Publication Year :
2020
Publisher :
Royal Society of Chemistry (RSC), 2020.

Abstract

Exploration of highly efficient and stable photocatalysts for water splitting has attracted much attention. However, developing a facile and effective approach to enhance the photocatalytic activity for practical applications is still highly challenging. Herein, we report a newly-fabricated perovskite oxide (Pr0.5(Ba0.5Sr0.5)0.5Co0.8Fe0.2O3) decorated with Au ultrafine nanoparticles for photocatalytic water splitting. An exceptionally high hydrogen evolution rate of 1618 μmol g-1 h-1 was achieved (under 2 h illumination) when the Au mass loading was optimized to 9.3 wt%, which is 540 times higher than that of the pristine one. The splendid photocatalytic activity of the sample was attributed to plasmon-excited hot electron injection from Au to Pr0.5(Ba0.5Sr0.5)0.5Co0.8Fe0.2O3 (PBSCF) under illumination. The finite-difference time-domain simulations (FDTD) demonstrated that the localized strong electric field formed at the interface between Au and PBSCF under illumination, enables the hot electrons to be energetic and make the injection possible.

Details

ISSN :
20403372 and 20403364
Volume :
12
Database :
OpenAIRE
Journal :
Nanoscale
Accession number :
edsair.doi...........dee203149295f4ae478dea3de9ff3153
Full Text :
https://doi.org/10.1039/c9nr10247g