Back to Search
Start Over
Central extensions of Lie superalgebras
- Source :
- Commentarii Mathematici Helvetici. 76:110-154
- Publication Year :
- 2001
- Publisher :
- Research Institute for Mathematical Sciences, Kyoto University, 2001.
-
Abstract
- For a commutative algebra A over a commutative ring k satisfying certain conditions, we construct the universal central extension of \( {\frak g}_k \otimes_k A \), regarded as a Lie superalgebra over k, where \( {\frak g}_k \) denotes a basic classical Lie superalgebra over k. To consider basic classical Lie superalgebras over an ring k, we also show the existence of their Chevalley basis. Our results contain not only the descriptions of the untwisted affine Lie superalgebras but also those of the toroidal Lie superalgebras.
- Subjects :
- Discrete mathematics
Pure mathematics
General Mathematics
Simple Lie group
Mathematics::Rings and Algebras
Adjoint representation
Lie superalgebra
(g,K)-module
Lie conformal algebra
Graded Lie algebra
Adjoint representation of a Lie algebra
Representation of a Lie group
Mathematics::Quantum Algebra
Mathematics::Representation Theory
Mathematics
Subjects
Details
- ISSN :
- 14208946 and 00102571
- Volume :
- 76
- Database :
- OpenAIRE
- Journal :
- Commentarii Mathematici Helvetici
- Accession number :
- edsair.doi...........df589a9e77ace5211cc28bc417ee8a7b
- Full Text :
- https://doi.org/10.1007/s000140050152