Back to Search
Start Over
A universal property for groupoid C* -algebras. I
- Source :
- Proceedings of the London Mathematical Society. 117:345-375
- Publication Year :
- 2018
- Publisher :
- Wiley, 2018.
-
Abstract
- We describe representations of groupoid C*-algebras on Hilbert modules over arbitrary C*-algebras by a universal property. For Hilbert space representations, our universal property is equivalent to Renault's Integration-Disintegration Theorem. For a locally compact group, it is related to the automatic continuity of measurable group representations. It implies known descriptions of groupoid C*-algebras as crossed products for \'etale groupoids and transformation groupoids of group actions on spaces.
- Subjects :
- Pure mathematics
Mathematics::Operator Algebras
General Mathematics
010102 general mathematics
Hilbert space
Locally compact group
16. Peace & justice
01 natural sciences
Group representation
010101 applied mathematics
Group action
symbols.namesake
Transformation (function)
Mathematics::K-Theory and Homology
Mathematics::Category Theory
symbols
Universal property
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 00246115
- Volume :
- 117
- Database :
- OpenAIRE
- Journal :
- Proceedings of the London Mathematical Society
- Accession number :
- edsair.doi...........dffc97ca134b2503306e3d657a292f3e
- Full Text :
- https://doi.org/10.1112/plms.12131