Back to Search
Start Over
Generation and entanglement concentration for electron-spin entangled cluster states using charged quantum dots in optical microcavities
- Source :
- Optics Communications. 322:32-39
- Publication Year :
- 2014
- Publisher :
- Elsevier BV, 2014.
-
Abstract
- We present schemes for deterministically generating multi-qubit electron-spin entangled cluster states by the giant circular birefringence, induced by the interface between the spin of a photon and the spin of an electron confined in a quantum dot embedded in a double-sided microcavity. Based on this interface, we construct the controlled phase flip (CPF) gate deterministically which is performed on electron-spin qubits and is the essential component of the cluster-state generation. As one of the universal gates, the CPF gate constructed can also be utilized in achieving scalable quantum computing. Besides, we propose the entanglement concentration protocol to reconstruct a partially entangled cluster state into a maximally entangled one, resorting to the projection measurement on an ancillary photon. By iterating the concentration scheme several times, the maximum success probability can be achieved. The fidelities and experimental feasibilities are analyzed with respect to currently available techniques, indicating that our schemes can work well in both the strong and weak (Purcell) coupling regimes.
- Subjects :
- Physics
Photon
Cluster state
Quantum Physics
Quantum entanglement
One-way quantum computer
Atomic and Molecular Physics, and Optics
Electronic, Optical and Magnetic Materials
Quantum dot
Qubit
Quantum mechanics
Electrical and Electronic Engineering
Physical and Theoretical Chemistry
W state
Quantum computer
Subjects
Details
- ISSN :
- 00304018
- Volume :
- 322
- Database :
- OpenAIRE
- Journal :
- Optics Communications
- Accession number :
- edsair.doi...........e2032b793c8de2d8df3745929f1c377d
- Full Text :
- https://doi.org/10.1016/j.optcom.2014.02.019