Back to Search Start Over

Protective Role of HO-1 Expressing CD16+ Patrolling Monocytes Against Hemolysis-Induced Endothelial Damage and Vaso-Occlusive Crisis in Sickle Cell Disease

Authors :
Avital Mendelson
David F. Friedman
Ronald Walsh
Patricia A. Shi
Caterina P. Minniti
Stella T. Chou
Fangmiao Jing
Karina Yazdanbakhsh
Yunfeng Liu
Woelsung Yi
Deepa Manwani
Source :
Blood. 130:767-767
Publication Year :
2017
Publisher :
American Society of Hematology, 2017.

Abstract

Causing leukocyte activation and upregulation of adhesion molecules on endothelial cells. CD16+ monocytes, also known as endothelial patrolling monocytes, normally scavenge the damaged cells and debris from the vasculature. As compared to other monocyte subsets or immune cell types, the CD16+monocyte subset expresses higher levels of the anti-inflammatory heme oxygenase 1 (HO-1), a heme degrading enzyme. Given the role of CD16+ monocytes as scavengers of debris on endothelial cells, we tested the hypothesis that this subset may protect SCD vasculature from the ongoing hemolytic insult through expression of high levels of HO-1. We found roughly 35% of circulating CD16+ monocytes from SCD patients expressed very high levels of HO-1 as compared to 5% in healthy controls. The HO-1hi SCD monocytes expressed significantly (30%) less TNF-a compared to HO-1lo monocytes following stimulation, consistent with anti-inflammatory effects of HO-1. We hypothesized that uptake of free hemoglobin/heme was responsible for high HO-1 expression levels in SCD CD16+ monocytes. To test this, healthy donors (HDs) or SCD patient monocytes were treated with different doses of free heme or hemolysed RBCs. We found dose-dependent HO-1 induction (five-fold at 20mM heme) in purified CD16- monocytes, but surprisingly none in CD16+ subset. However, upon co-culture with human umbilical vein endothelial cells (HUVEC), continuous or prior exposure to heme induced HO-1hi expression exclusively in CD16+ monocytes (5 fold in HD and further two fold in SCD compared to non-heme treated cocultures, p Disclosures No relevant conflicts of interest to declare.

Details

ISSN :
15280020 and 00064971
Volume :
130
Database :
OpenAIRE
Journal :
Blood
Accession number :
edsair.doi...........e2143c1f47945207b5898d9b78a53fad