Back to Search Start Over

Low-Frequency Variability of the Indian Monsoon–ENSO Relationship and the Tropical Atlantic: The 'Weakening' of the 1980s and 1990s

Authors :
J. H. Yoo
Annalisa Bracco
Franco Molteni
Fred Kucharski
Source :
Journal of Climate. 20:4255-4266
Publication Year :
2007
Publisher :
American Meteorological Society, 2007.

Abstract

The Indian monsoon–El Niño–Southern Oscillation (ENSO) relationship, according to which a drier than normal monsoon season precedes peak El Niño conditions, weakened significantly during the last two decades of the twentieth century. In this work an ensemble of integrations of an atmospheric general circulation model (AGCM) coupled to an ocean model in the Indian Basin and forced with observed sea surface temperatures (SSTs) elsewhere is used to investigate the causes of such a weakening. The observed interdecadal variability of the ENSO–monsoon relationship during the period 1950–99 is realistically simulated by the model and a dominant portion of the variability is associated with changes in the tropical Atlantic SSTs in boreal summer. In correspondence to ENSO, the tropical Atlantic SSTs display negative anomalies south of the equator in the last quarter of the twentieth century and weakly positive anomalies in the previous period. Those anomalies in turn produce heating anomalies, which excite a Rossby wave response in the Indian Ocean in both the model and the reanalysis data, impacting the time-mean monsoon circulation. The proposed mechanism of remote response of the Indian rainfall to tropical Atlantic sea surface temperatures is further tested forcing the AGCM coupled to the ocean model in the Indian Basin with climatological SSTs in the Atlantic Ocean and observed anomalies elsewhere. In this second ensemble the ENSO–monsoon relationship is characterized by a stable and strong anticorrelation through the whole second half of the twentieth century.

Details

ISSN :
15200442 and 08948755
Volume :
20
Database :
OpenAIRE
Journal :
Journal of Climate
Accession number :
edsair.doi...........e328c5a86f380826ec33caa32c17e95d
Full Text :
https://doi.org/10.1175/jcli4254.1