Back to Search Start Over

A Mikhlin--Hörmander multiplier theorem for the partial harmonic oscillator

Authors :
Su, Xiaoyan
Wang, Ying
Xu, Guixiang
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

We prove a Mikhlin--Hörmander multiplier theorem for the partial harmonic oscillator $H_{\textup{par}}=-\pa_ρ^2-Δ_x+|x|^2$ for $(ρ, x)\in\R\times\R^d$ by using the Littlewood--Paley $g$ and $g^\ast$ functions and the associated heat kernel estimate. The multiplier we have investigated is defined on $\mathbb R \times \mathbb N$.<br />14 pages, no figure. All comments are welcome

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........e3c30489acbe6d68d1f17699a491a77e
Full Text :
https://doi.org/10.48550/arxiv.2208.02065