Back to Search
Start Over
A Mikhlin--Hörmander multiplier theorem for the partial harmonic oscillator
- Publication Year :
- 2022
- Publisher :
- arXiv, 2022.
-
Abstract
- We prove a Mikhlin--Hörmander multiplier theorem for the partial harmonic oscillator $H_{\textup{par}}=-\pa_ρ^2-Δ_x+|x|^2$ for $(ρ, x)\in\R\times\R^d$ by using the Littlewood--Paley $g$ and $g^\ast$ functions and the associated heat kernel estimate. The multiplier we have investigated is defined on $\mathbb R \times \mathbb N$.<br />14 pages, no figure. All comments are welcome
- Subjects :
- FOS: Mathematics
Analysis of PDEs (math.AP)
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........e3c30489acbe6d68d1f17699a491a77e
- Full Text :
- https://doi.org/10.48550/arxiv.2208.02065