Back to Search Start Over

Analysis of the interdigitated back contact solar cells: The n-type substrate lifetime and wafer thickness

Authors :
Liu Xinyu
Xing Zhao
Liu Xiao-Wen
Jin Zhi
Sun Yun
Zhang Wei
Chen Chen
Jia Rui
Source :
Chinese Physics B. 24:108801
Publication Year :
2015
Publisher :
IOP Publishing, 2015.

Abstract

The n-type silicon integrated-back contact (IBC) solar cell has attracted much attention due to its high efficiency, whereas its performance is very sensitive to the wafer of low quality or the contamination during high temperature fabrication processing, which leads to low bulk lifetime τbulk. In order to clarify the influence of bulk lifetime on cell characteristics, two-dimensional (2D) TCAD simulation, combined with our experimental data, is used to simulate the cell performances, with the wafer thickness scaled down under various τbulk conditions. The modeling results show that for the IBC solar cell with high τbulk, (such as 1 ms–2 ms), its open-circuit voltage Voc almost remains unchanged, and the short-circuit current density Jsc monotonically decreases as the wafer thickness scales down. In comparison, for the solar cell with low τbulk (for instance, < 500 μs) wafer or the wafer contaminated during device processing, the Voc increases monotonically but the Jsc first increases to a maximum value and then drops off as the wafer's thickness decreases. A model combing the light absorption and the minority carrier diffusion is used to explain this phenomenon. The research results show that for the wafer with thinner thickness and high bulk lifetime, the good light trapping technology must be developed to offset the decrease in Jsc.

Details

ISSN :
16741056
Volume :
24
Database :
OpenAIRE
Journal :
Chinese Physics B
Accession number :
edsair.doi...........e44f8f25462cb986335ed3e2940fcc2f
Full Text :
https://doi.org/10.1088/1674-1056/24/10/108801