Back to Search Start Over

Virtual analyzer of extractive content in Eucalyptus wood based on hybrid modeling approach for the pulp and paper industry

Authors :
Brenda Novais Viana
Karen Valverde Pontes
Source :
Wood Science and Technology. 55:777-795
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

This paper is aimed to develop a hybrid model (PCA-ANN) to predict the extractive content in eucalyptus wood clones. The input variables to the virtual analyzer are planting parameters available from the forest inventory, therefore the prediction does not rely on laboratory analysis of the wood samples, affording a quick estimate of the extractive contents. This study further bridges the literature gap on the investigation of the cause of variability of extractive content in eucalyptus wood. The PCA-ANN was identified from experimental data to predict and monitor the extractive content, since laboratory measurements can take several days and become available only after wood processing. The experimental data contained information on ten species of eucalyptus clones from five regions in the extreme south of Bahia, Brazil. Principal Component Analysis (PCA) firstly assessed the impact of planting variables on the extractives content. The variability of the data was represented by eight principal components and the variables that mostly contribute to the extractive content are: potential acidity, iron, saturation of aluminum, magnesium, pH, base saturation, remaining phosphorus, zinc, manganese and copper. The artificial neural network (ANN) with the 8 principal components in the input layer showed that the PCA could effectively reduce the dimensionality of the data. For practical purposes, though, the ANN with 10 input variables and 16 neurons in the hidden layer, presenting an average relative deviation of 1.5%, is recommended. The prediction of the extractive content is essential to allow preventive management practices toward the improvement of yield and quality of the cellulosic pulp.

Details

ISSN :
14325225 and 00437719
Volume :
55
Database :
OpenAIRE
Journal :
Wood Science and Technology
Accession number :
edsair.doi...........e47f75921edfc6c14d15b632b5122951
Full Text :
https://doi.org/10.1007/s00226-021-01285-7