Back to Search Start Over

Abstract 633: Inhibition of TGFβ as a strategy to convert the irradiated tumor into in situ individualized vaccine

Authors :
Claire Vanpouille-Box
Julie M. Diamond
James Babb
Dörthe Schaue
William H. McBride
Silvia C. Formenti
Mary Helen Barcellos-Hoff
Sandra Demaria
Jiri Zavadil
Source :
Cancer Research. 74:633-633
Publication Year :
2014
Publisher :
American Association for Cancer Research (AACR), 2014.

Abstract

Accumulating data support the concept that ionizing radiation therapy (RT) has the potential to convert the tumor into an in situ, individualized vaccine; however this potential is rarely realized by RT alone. Transforming growth factor β (TGFβ) is an immunosuppressive cytokine that is activated by RT and inhibits the antigen-presenting function of dendritic cells and the differentiation of effector CD8+ T cells. Here we tested the hypothesis that TGFβ hinders the ability of RT to promote anti-tumor immunity. Development of tumor-specific immunity was examined in two pre-clinical models of metastatic breast cancer and analyzed in patients with metastatic breast cancer treated with local radiotherapy and the TGFβ-neutralizing antibody Fresolimumab. Mice bearing established 4T1 and TSA mouse mammary carcinomas treated with pan-isoform specific TGFβ neutralizing antibody, 1D11, showed significantly improved control of the irradiated tumor and non-irradiated metastases, but no effect in the absence of RT. Notably, whole tumor transcriptional analysis demonstrated the selective upregulation of genes associated with immune-mediated rejection only in tumors of mice treated with RT+TGFβ blockade. Mice treated with RT+TGFβ blockade exhibited cross-priming of CD8+ T cells producing IFNγ in response to three tumor-specific antigens in tumor-draining lymph nodes, which was not evident for single modality treatment. Likewise, HLA-A2.1+ metastatic breast cancer patients (n=8) enrolled in NCT01401062 trial of local RT and fresolimumab were examined for CD8+ T cells specific for the tumor antigen survivin by tetramer staining. Three patients developed increased frequencies of survivin-specific CD8+ T cells in the blood during treatment, while two patients negative at baseline became positive. Analysis of the immune infiltrate in mouse tumors showed a significant increase in CD4+ and CD8+ T cells only in mice treated with the combination of RT+TGFβ blockade. Depletion of CD4+ or CD8+ T cells abrogated the therapeutic benefit of RT+TGFβ blockade. These data identify TGFβ as a master inhibitor of the ability of RT to generate an in situ tumor vaccine, which supports testing inhibition of TGFβ during radiotherapy to promote therapeutically effective anti-tumor immunity. Supported by DOD BCRP Multi-Team Award BC100481. Citation Format: Claire I. Vanpouille-Box, Julie M. Diamond, Jiri Zavadil, James Babb, Dörthe Schaue, Mary Helen Barcellos-Hoff, William H. McBride, Silvia C. Formenti, Sandra Demaria. Inhibition of TGFβ as a strategy to convert the irradiated tumor into in situ individualized vaccine. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 633. doi:10.1158/1538-7445.AM2014-633

Details

ISSN :
15387445 and 00085472
Volume :
74
Database :
OpenAIRE
Journal :
Cancer Research
Accession number :
edsair.doi...........e4ca946c90ed0e489abf0c37162710f1
Full Text :
https://doi.org/10.1158/1538-7445.am2014-633