Back to Search Start Over

Experimental investigation of primary-wave velocities and constrained moduli of quartz sand subjected to extender element tests and stress anisotropy

Authors :
Kostas Senetakis
Huan He
M. Li
Pathegama Gamage Ranjith
Source :
Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 3:211-219
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

The measurement of primary wave velocities (Vp) of geo-materials is an essential step for the geophysical and dynamic characterization of sediments. Advances in experimentation have established in recent years the use of the extender element test method in laboratory research and practice. This method is applicable for the measurement of Vp of geo-materials applying a high-frequency pulse excitation, typically between 5 and 20 kHz. In the study, extender elements inserted in a stress path triaxial apparatus were used for the measurement of primary-wave velocities of quartz sands of variable grain morphologies. During the dynamic tests, the samples were subjected to a deviatoric compressive load, which allowed the study of the effect of stress anisotropy, expressed through the stress ratio, on Vp. To overcome difficulties of poor signal output of P-waves, which may occur when the sample is fully saturated, the samples were prepared and tested in a dry state. Measurements of sample volumetric strains were conducted from local strain sensor attached to the sample which captured radial deformations during the isotropic and anisotropic stress paths and a vertically positioned LVDT which captured the axial strains of the samples. Accordingly, based on the measured P-wave velocities and the density of the samples, the constrained modulus (Mmax) was quantified. The results indicated that for a given mean effective confining pressure, the sensitivity of Vp and Mmax to the magnitude of the applied stress ratio was controlled, markedly, by the morphology of the grains; for sands of fairly rounded and spherical grains, this effect was relatively small, but for sands of irregular in shape grains, the stress ratio affected markedly the behavior of the samples.

Details

ISSN :
23638427 and 23638419
Volume :
3
Database :
OpenAIRE
Journal :
Geomechanics and Geophysics for Geo-Energy and Geo-Resources
Accession number :
edsair.doi...........e5f33295b964bc7b213d6b59bf0dd4e8
Full Text :
https://doi.org/10.1007/s40948-017-0054-6