Back to Search Start Over

Injectivity Sets for Spherical Radon Transform

Authors :
V. V. Volchkov
Source :
Integral Geometry and Convolution Equations ISBN: 9789401039994
Publication Year :
2003
Publisher :
Springer Netherlands, 2003.

Abstract

Throughout in this chapter we assume that n ⩾ 2. Let \( \mathcal{U} \) be a domain in ℝ n and let \( f \in L_{loc} \left( \mathcal{U} \right) \). For any \( x \in \mathcal{U} \) and almost all \( r \in \left( {0,dist\left( {x,\partial \mathcal{U}} \right)} \right) \) the spherical Radon transform of f is defined by $$ \mathcal{R}f\left( {x,r} \right) = \frac{1} {{\omega _{n - 1} }}\int\limits_{\mathbb{S}^{n - 1} } {f\left( {x + r\eta } \right)d\omega \left( \eta \right)} . $$ (1.1) (The reader should be warned that there does not seem to be a standard terminology in this area. Some authors use spherical Radon transform to refer to the transform \(\widehat f(\omega ,t)\) defined below in Section 1.2, which we have called the spherical Radon transform on spheres).

Details

ISBN :
978-94-010-3999-4
ISBNs :
9789401039994
Database :
OpenAIRE
Journal :
Integral Geometry and Convolution Equations ISBN: 9789401039994
Accession number :
edsair.doi...........e7664b79db053a6115060b7e6721c53f
Full Text :
https://doi.org/10.1007/978-94-010-0023-9_27