Back to Search
Start Over
Quantifying burned area for North American forests: Implications for direct reduction of carbon stocks
- Source :
- Journal of Geophysical Research. 116
- Publication Year :
- 2011
- Publisher :
- American Geophysical Union (AGU), 2011.
-
Abstract
- [1] A synthesis was carried out to analyze information available to quantify fire activity and burned area across North America, including a comparison of different data sources and an assessment of how variations in burned area estimate impact carbon emissions from fires. Data sets maintained by fire management agencies provide the longest record of burned area information. Canada and Alaska have the most well developed data sets consisting of the perimeters of large fires (>200 ha) going back to 1959 and 1950, respectively. A similar data set back to 1980 exists for the Conterminous U.S., but contains data only from federal land management agencies. During the early half of the 20th century, average burned area across North America ranged between 10 and 20 × 106 ha yr−1, largely because of frequent surface fires in the southeastern U.S. Over the past two decades, an average of 5 × 106 ha yr−1 has burned. Moderate-resolution (500–1000 m) satellite burned area products information products appear to either underestimate burned area (GFED3 and MCD45A1) or significantly overestimate burned area (L3JRC and GLOBCARBON). Of all the satellite data products, the GFED3 data set provides the most consistent source of burned area when compared to fire management data. Because they do not suitably reflect actual fire activity, the L3JRC and GLOBCARBON burned area data sets are not suitable for use in carbon cycle studies in North America. The MCD45A1 data set appears to map a higher fraction of burned area in low biomass areas compared to the GFED3 data set.
- Subjects :
- Atmospheric Science
Biomass (ecology)
Ecology
Meteorology
Land management
Paleontology
Soil Science
Forestry
Aquatic Science
Oceanography
Carbon cycle
Geophysics
Space and Planetary Science
Geochemistry and Petrology
Greenhouse gas
Satellite data
Earth and Planetary Sciences (miscellaneous)
Environmental science
Physical geography
Carbon stock
Earth-Surface Processes
Water Science and Technology
Subjects
Details
- ISSN :
- 01480227
- Volume :
- 116
- Database :
- OpenAIRE
- Journal :
- Journal of Geophysical Research
- Accession number :
- edsair.doi...........e77188613186df8983882703e18922cc
- Full Text :
- https://doi.org/10.1029/2011jg001707