Back to Search
Start Over
Color contoning for 3D printing
- Source :
- ACM Transactions on Graphics. 36:1-15
- Publication Year :
- 2017
- Publisher :
- Association for Computing Machinery (ACM), 2017.
-
Abstract
- Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results.
- Subjects :
- business.industry
Computer science
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
Volume (computing)
3D printing
Color balance
020207 software engineering
02 engineering and technology
Object (computer science)
01 natural sciences
Computer Graphics and Computer-Aided Design
Color quantization
010309 optics
Computer graphics (images)
0103 physical sciences
0202 electrical engineering, electronic engineering, information engineering
Computer vision
Color filter array
Artificial intelligence
Dot gain
business
ComputingMethodologies_COMPUTERGRAPHICS
Subjects
Details
- ISSN :
- 15577368 and 07300301
- Volume :
- 36
- Database :
- OpenAIRE
- Journal :
- ACM Transactions on Graphics
- Accession number :
- edsair.doi...........ea528234a8177582259c64e5ed9eb03a
- Full Text :
- https://doi.org/10.1145/3072959.3073605