Back to Search Start Over

Numerical Analysis of Solidification Behavior during Laser Welding Nickel-Based Single-Crystal Superalloy Part I: Crystallography-Dependent Solid Aluminum Distribution

Authors :
Zhi Guo Gao
Source :
Materials Science Forum. 1020:13-22
Publication Year :
2021
Publisher :
Trans Tech Publications, Ltd., 2021.

Abstract

The thermal metallurgical modeling of alloying aluminum redistribution was further developed through couple of heat transfer model, dendrite selection model, multicomponent dendrtie grwoth model and nonequilibrium solidification model during three-dimensional nickel-based single-crystal superalloy weld pool solidification over a wide range of welding conditions (laser power, welding speed and welding configuration) to facilitate understanding of solidification cracking phenomena. It is indicated that the welding configuration plays more important role than heat input in aluminum redistribution. The bimodal distribution of solid aluminum concentration along the solid/liquid interface is crystallographically symmetrical about the weld pool centerline for (001) and [100] welding configuration, while the distribution of solid aluminum concentration along the solid/liquid interface is crystallographically asymmetrical throughout the weld pool for (001) and [110] welding configuration. The size of vulnerable [100] dendrite growth region is beneficially suppressed in favor of epitaxial [001] dendrite growth region through optimum low heat input (low laser power and high welding speed) to facilitate single-crystal dendrite growth for successful crack-free weld at the expense of shallow weld pool geometry. The overall aluminum concentration in (001) and [100] welding configuration is significantly smaller than that of (001) and [110] welding configuration regardless of heat input. Severe aluminum enrichment is confined to [100] dendrite growth region where is more susceptible to solidification cracking. Heat input and welding configuration are optimized in order to minimize the solidification cracking susceptibility and improve microstructure stability. The relationship between welding conditions and alloying aluminum redistribution are established for solidification cracking susceptibility evaluation. The higher heat input is used, the more aluminum enrichment is monotonically incurred by diffusion with considerable increase of metallurgical driving forces for morphology instability and microstructure anomalies to deteriorate weldability and vice versa. The mechanism of asymmetrical solidification cracking because of crystallography-dependent alloying redistribution is proposed. The theoretical predictions agree well with the experiment results. Moreover, the useful modeling is also applicable to other single-crystal superalloys with similar metallurgical properties during laser welding or laser cladding.

Details

ISSN :
16629752
Volume :
1020
Database :
OpenAIRE
Journal :
Materials Science Forum
Accession number :
edsair.doi...........eb2df3f4f1774e0d7c307235a19f3694
Full Text :
https://doi.org/10.4028/www.scientific.net/msf.1020.13