Back to Search Start Over

Within-sibship GWAS improve estimates of direct genetic effects

Authors :
Ailin Falkmo Hansen
Christina C. Dahm
David M. Evans
Massimo Mangino
Melissa C. Southey
Lawrence F. Bielak
Ben Michael Brumpton
Sharon L.R. Kardia
Archie Campbell
Yoonsu Cho
Tim T Morris
Patrick Turley
Jeffrey S. Reid
Laurence J. Howe
Kaare Christensen
Karri Silventoinen
Sudheer Giddaluru
John K. Hewitt
Philipp Koellinger
W. David Hill
Daniel J. Benjamin
Gibran Hemani
Margaret J. Wright
Scott D. Gordon
Elliot M. Tucker-Drob
Rosa Cheesman
Nicholas G. Martin
Robin G. Walters
Paraskevi Christofidou
Aris Baras
George Davey Smith
Matthew C. Keller
John D. Overton
Deepika R Dokuru
Jennifer A. Smith
Nancy L. Pedersen
Michel G. Nivard
Dorret I. Boomsma
Jaakko Kaprio
Humaira Rasheed
Hyeokmoon Kweon
Sara Hägg
Shona M. Kerr
John L. Hopper
Pekka Martikainen
Teemu Palviainen
Luke M. Evans
Patricia A. Peyser
Jared V. Balbona
Lucija Klaric
Tim D. Spector
Patrik K. E. Magnusson
Melinda Mills
Alexandra Havdahl
Chandra A. Reynolds
Jean-Baptiste Pingault
Zhengming Chen
Shuai Li
Harry Campbell
Travis T. Mallard
Cristen J. Willer
Yunzhang Wang
Yongkang Kim
Robert Plomin
Marianne Nygaard
Michael C. Stallings
Sarah E. Medland
Anne E. Justice
Geetha Chittoor
Debbie A Lawlor
Øyvind Næss
Liming Li
Kuang Lin
Eco J. C. de Geus
Christopher R. Bauer
Matthijs D. van der Zee
Iona Y Millwood
Caroline Hayward
Penelope A. Lind
David J. Porteous
K. Paige Harden
Meike Bartels
Neil M Davies
James F. Wilson
Bjørn Olav Åsvold
Antti Latvala
Scott M. Ratliff
Kristian Hveem
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

Estimates from genome-wide association studies (GWAS) represent a combination of the effect of inherited genetic variation (direct effects), demography (population stratification, assortative mating) and genetic nurture from relatives (indirect genetic effects). GWAS using family-based designs can control for demography and indirect genetic effects, but large-scale family datasets have been lacking. We combined data on 159,701 siblings from 17 cohorts to generate population (between-family) and within-sibship (within-family) estimates of genome-wide genetic associations for 25 phenotypes. We demonstrate that existing GWAS associations for height, educational attainment, smoking, depressive symptoms, age at first birth and cognitive ability overestimate direct effects. We show that estimates of SNP-heritability, genetic correlations and Mendelian randomization involving these phenotypes substantially differ when calculated using within-sibship estimates. For example, genetic correlations between educational attainment and height largely disappear. In contrast, analyses of most clinical phenotypes (e.g. LDL-cholesterol) were generally consistent between population and within-sibship models. We also report compelling evidence of polygenic adaptation on taller human height using within-sibship data. Large-scale family datasets provide new opportunities to quantify direct effects of genetic variation on human traits and diseases.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........ebaba886da75dd2037673510528b118e