Back to Search
Start Over
Fragmentation landscape of cell-free DNA revealed by deconvolutional analysis of end motifs
- Source :
- Proceedings of the National Academy of Sciences. 120
- Publication Year :
- 2023
- Publisher :
- Proceedings of the National Academy of Sciences, 2023.
-
Abstract
- Cell-free DNA (cfDNA) fragmentation is nonrandom, at least partially mediated by various DNA nucleases, forming characteristic cfDNA end motifs. However, there is a paucity of tools for deciphering the relative contributions of cfDNA cleavage patterns related to underlying fragmentation factors. In this study, through non-negative matrix factorization algorithm, we used 256 5′ 4-mer end motifs to identify distinct types of cfDNA cleavage patterns, referred to as “founder” end-motif profiles (F-profiles). F-profiles were associated with different DNA nucleases based on whether such patterns were disrupted in nuclease-knockout mouse models. Contributions of individual F-profiles in a cfDNA sample could be determined by deconvolutional analysis. We analyzed 93 murine cfDNA samples of different nuclease-deficient mice and identified six types of F-profiles. F-profiles I, II, and III were linked to deoxyribonuclease 1 like 3 (DNASE1L3), deoxyribonuclease 1 (DNASE1), and DNA fragmentation factor subunit beta (DFFB), respectively. We revealed that 42.9% of plasma cfDNA molecules were attributed to DNASE1L3-mediated fragmentation, whereas 43.4% of urinary cfDNA molecules involved DNASE1-mediated fragmentation. We further demonstrated that the relative contributions of F-profiles were useful to inform pathological states, such as autoimmune disorders and cancer. Among the six F-profiles, the use of F-profile I could inform the human patients with systemic lupus erythematosus. F-profile VI could be used to detect individuals with hepatocellular carcinoma, with an area under the receiver operating characteristic curve of 0.97. F-profile VI was more prominent in patients with nasopharyngeal carcinoma undergoing chemoradiotherapy. We proposed that this profile might be related to oxidative stress.
- Subjects :
- Multidisciplinary
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 120
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi...........ebd9260fa464576f47f0fd91e97cfc65
- Full Text :
- https://doi.org/10.1073/pnas.2220982120