Back to Search Start Over

One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber

Authors :
Fashen Li
Yong Peng
Hao-Li Zhang
Juan Feng
Haiming Fan
Jintao Bai
Yaping Du
Xinghua Li
Source :
Journal of Materials Chemistry A. 3:5535-5546
Publication Year :
2015
Publisher :
Royal Society of Chemistry (RSC), 2015.

Abstract

CoFe2O4/graphene oxide hybrids have been successfully fabricated via a facile one-pot polyol route, followed by chemical conversion into FeCo/graphene hybrids under H2/NH3 atmosphere. These magnetic nanocrystals were uniformly decorated on the entire graphene nanosheets without aggregation. The morphology, chemical composition and crystal structure have been characterized in detail. In particular, FeCo/graphene hybrids show significant improvement in both permeability and permittivity due to the combination of the high magnetocrystalline anisotropy of metallic FeCo and high conductivity of light-weight graphene. This leads to remarkable enhancement in microwave absorption properties. The maximum reflection loss of FeCo/graphene hybrids reaches −40.2 dB at 8.9 GHz with a matching thickness of only 2.5 mm, and the absorption bandwidth with reflection loss exceeding −10 dB is in the 3.4–18 GHz range for the absorber thickness of only 1.5–5 mm. Moreover, the experimental relationship between matching thickness and frequency is found to obey the quarter-wavelength matching model, facilitating the design of FeCo/graphene hybrid film for practical application. The results suggest that the FeCo/graphene hybrids developed here can serve as an ideal candidate for the manufacture of light-weight and high-efficiency microwave-absorbing devices.

Details

ISSN :
20507496 and 20507488
Volume :
3
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A
Accession number :
edsair.doi...........f1190a13d5fa0fbc263dd240d8375c3f