Back to Search Start Over

Measurement of the CKM Matrix Element $|V_{cb}|$ from $B^{0} \to D^{*-} \ell^+ ��_\ell$ at Belle

Authors :
Waheed, E.
Urquijo, P.
Adachi, I.
Adamczyk, K.
Aihara, H.
Said, S. Al
Asner, D. M.
Atmacan, H.
Aushev, T.
Ayad, R.
Babu, V.
Badhrees, I.
Bansal, V.
Behera, P.
Beleno, C.
Bernlochner, F.
Bhuyan, B.
Bilka, T.
Biswal, J.
Bobrov, A.
Bonvicini, G.
Bozek, A.
Bracko, M.
Browder, T. E.
Campajola, M.
Cervenkov, D.
Chang, P.
Chekelian, V.
Chen, A.
Cheon, B. G.
Chilikin, K.
Cho, H. E.
Cho, K.
Choi, S. -K.
Choi, Y.
Choudhury, S.
Cinabro, D.
Cunliffe, S.
Di Carlo, S.
Dolezal, Z.
Dong, T. V.
Dossett, D.
Eidelman, S.
Epifanov, D.
Fast, J. E.
Fulsom, B. G.
Garg, R.
Gaur, V.
Garmash, A.
Giri, A.
Goldenzweig, P.
Golob, B.
Grzymkowska, O.
Haba, J.
Hara, T.
Hayasaka, K.
Hayashii, H.
Hedges, M. T.
Hou, W. -S.
Hsu, C. -L.
Iijima, T.
Inami, K.
Inguglia, G.
Ishikawa, A.
Iwasaki, M.
Iwasaki, Y.
Jacobs, W. W.
Jeon, H. B.
Jia, S.
Jin, Y.
Joffe, D.
Joo, K. K.
Kahn, J.
Kaliyar, A. B.
Karyan, G.
Kawasaki, T.
Kim, C. H.
Kim, D. Y.
Kim, K. T.
Kim, S. H.
Kinoshita, K.
Kodys, P.
Korpar, S.
Kotchetkov, D.
Krizan, P.
Kroeger, R.
Krokovny, P.
Kuhr, T.
Kulasiri, R.
Kuzmin, A.
Kwon, Y. -J.
Lange, J. S.
Lee, J. Y.
Lee, S. C.
Li, C. H.
Li, L. K.
Li, Y. B.
Gioi, L. Li
Libby, J.
Lieret, K.
Liventsev, D.
Lu, P. -C.
Luo, T.
MacNaughton, J.
Masuda, M.
Matvienko, D.
Merola, M.
Metzner, F.
Miyabayashi, K.
Miyata, H.
Mizuk, R.
Mohanty, G. B.
Mori, T.
Mussa, R.
Nakamura, I.
Nakao, M.
Nath, K. J.
Natkaniec, Z.
Nayak, M.
Niiyama, M.
Nisar, N. K.
Nishida, S.
Nishimura, K.
Ogawa, S.
Ono, H.
Pakhlov, P.
Pakhlova, G.
Pal, B.
Pardi, S.
Park, H.
Park, S. -H.
Paul, S.
Pestotnik, R.
Piilonen, L. E.
Popov, V.
Prencipe, E.
Prim, M.
Rostomyan, A.
Russo, G.
Sakai, Y.
Salehi, M.
Sandilya, S.
Sanuki, T.
Savinov, V.
Schneider, O.
Schnell, G.
Schueler, J.
Schwanda, C.
Seino, Y.
Senyo, K.
Seon, O.
Sevior, M. E.
Shebalin, V.
Shen, C. P.
Shiu, J. -G.
Shwartz, B.
Simon, F.
Sokolov, A.
Solovieva, E.
Stanic, S.
Staric, M.
Stottler, Z. S.
Strube, J. F.
Sumiyoshi, T.
Takizawa, M.
Tanida, K.
Tenchini, F.
Trabelsi, K.
Uchida, M.
Uglov, T.
Unno, Y.
Uno, S.
Usov, Y.
Varner, G.
Varvell, K. E.
Vinokurova, A.
Vossen, A.
Wang, C. H.
Wang, M. -Z.
Wang, P.
Won, E.
Yang, S. B.
Ye, H.
Yusa, Y.
Zhang, Z. P.
Zhilich, V.
Zhukova, V.
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

We present a new measurement of the CKM matrix element $|V_{cb}|$ from $B^{0} \to D^{*-} \ell^+ ��_\ell$ decays, reconstructed with the full Belle data set of $711 \, \rm fb^{-1}$ integrated luminosity. Two form factor parameterizations, originally conceived by the Caprini-Lellouch-Neubert (CLN) and the Boyd, Grinstein and Lebed (BGL) groups, are used to extract the product $\mathcal{F}(1)��_{\rm EW}|V_{cb}|$ and the decay form factors, where $\mathcal{F}(1)$ is the normalization factor and $��_{\rm EW}$ is a small electroweak correction. In the CLN parameterization we find $\mathcal{F}(1)��_{\rm EW}|V_{cb}| = (35.06 \pm 0.15 \pm 0.56) \times 10^{-3}$, $��^{2}=1.106 \pm 0.031 \pm 0.007$, $R_{1}(1)=1.229 \pm 0.028 \pm 0.009$, $R_{2}(1)=0.852 \pm 0.021 \pm 0.006$. For the BGL parameterization we obtain $\mathcal{F}(1)��_{\rm EW}|V_{cb}|= (34.93 \pm 0.23 \pm 0.59)\times 10^{-3}$, which is consistent with the World Average when correcting for $\mathcal{F}(1)��_{\rm EW}$. The branching fraction of $B^{0} \to D^{*-} \ell^+ ��_\ell$ is measured to be $\mathcal{B}(B^{0}\rightarrow D^{*-}\ell^{+}��_{\ell}) = (4.90 \pm 0.02 \pm 0.16)\%$. We also present a new test of lepton flavor universality violation in semileptonic $B$ decays, $\frac{{\cal B }(B^0 \to D^{*-} e^+ ��)}{{\cal B }(B^0 \to D^{*-} ��^+ ��)} = 1.01 \pm 0.01 \pm 0.03~$. The errors correspond to the statistical and systematic uncertainties respectively. This is the most precise measurement of $\mathcal{F}(1)��_{\rm EW}|V_{cb}|$ and form factors to date and the first experimental study of the BGL form factor parameterization in an experimental measurement.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........f2cd7f4fe53c31aefc35a26dbb3e236c
Full Text :
https://doi.org/10.48550/arxiv.1809.03290