Back to Search Start Over

Fabrication of deep and small holes by synchronized laser and shaped tube electrochemical machining (Laser-STEM) hybrid process

Authors :
Wenwu Zhang
Zhang Guangyi
Yufeng Wang
Feng Yang
Source :
The International Journal of Advanced Manufacturing Technology. 105:2721-2731
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

The synchronized laser and shaped tube electrochemical machining (Laser-STEM), a hybrid machining process that combined the advantages of electrochemical machining (ECM) and laser beam machining (LBM), has been proposed and studied. The mechanisms of Laser-STEM were studied theoretically and experimentally. Mathematical model has been developed to study the effects of laser-induced thermal effects on the electrochemical dissolution rate. The influences of electrolyte concentration and laser power on the laser attenuation coefficient have been studied. Results showed that the side gap could be decreased by 62.7% and the feeding rate could be raised by 108% when utilizing Laser-STEM with a proper laser power for drilling small holes, compared with that without laser assistance. Moreover, the performance of Laser-STEM has been investigated, in terms of laser power and pulsed voltage. Experimental results showed that the machining efficiency increased with higher laser power, pulse voltage, and feeding rate, and the precision could be improved with the higher laser power and feeding rate and a smaller pulsed voltage. Finally, small holes with a diameter of 1.25 mm and free of recast layer have been fabricated on the aluminum alloy workpiece of 5 mm in thickness.

Details

ISSN :
14333015 and 02683768
Volume :
105
Database :
OpenAIRE
Journal :
The International Journal of Advanced Manufacturing Technology
Accession number :
edsair.doi...........f31f6796f27eba89981f56087433bf1d