Back to Search
Start Over
Effective luminescence sensing of Fe3+, Cr2O72−, MnO4− and 4-nitrophenol by lanthanide metal–organic frameworks with a new topology type
- Source :
- Dalton Transactions. 48:12287-12295
- Publication Year :
- 2019
- Publisher :
- Royal Society of Chemistry (RSC), 2019.
-
Abstract
- Lanthanide MOFs (Ln-MOFs), {[Ln2(L)2(H2O)2]·5H2O·6DMAC}n, [Ln||| = Eu(1) and Tb(2); H3L = 4,4'-(((5-carboxy-1,3-phenylene)bis(azanediyl))bis(carbonyl)) dibenzoic acid, DMAC = N,N'-dimethylacetamide], with a new topology type have been isolated. Single crystal X-ray diffraction indicates that complexes 1 and 2 are isostructural with binuclear [Eu2(COO)7]n secondary building units as 7-connected nodes and H3L ligands as 3-connected nodes and can be viewed as a (5,7)-connected 3D framework with a new topological point symbol of {32·44·54} {34·46·56·65}. Complexes 1 and 2 exhibit an excellent luminescence sensing response to inorganic ions Fe3+, Cr2O72-, MnO4- and 4-nitrophenol, with a low detection limit and high Ksv value. Interestingly, when the MnO4- ions are detected, the color of the solid sample is observed to change from yellow to brown, visually indicating luminescence induction, which makes the process of detecting MnO4- ions simpler and more practical. Moreover, by using time-resolved photoluminescence techniques, complex 1 can effectively eliminate background fluorescence interference during detection and improve detection accuracy. Solvent luminescence studies, pH stability and PXRD data indicate that complexes 1 and 2 can be used as excellent water-stable multi-response luminescent sensors for detecting a wide variety of toxic substances. In addition, the mechanism of selective detection is explained by the energy competition between the excitation of complexes 1 and 2 and the ultraviolet absorption of the responsive substance.
- Subjects :
- Detection limit
Lanthanide
Materials science
Photoluminescence
010405 organic chemistry
010402 general chemistry
Topology
01 natural sciences
Dimethylacetamide
0104 chemical sciences
Inorganic Chemistry
chemistry.chemical_compound
chemistry
Metal-organic framework
Isostructural
Luminescence
Single crystal
Subjects
Details
- ISSN :
- 14779234 and 14779226
- Volume :
- 48
- Database :
- OpenAIRE
- Journal :
- Dalton Transactions
- Accession number :
- edsair.doi...........f364e70ec5ca07f27f9c845c0e455038
- Full Text :
- https://doi.org/10.1039/c9dt01907c