Back to Search Start Over

A dynamic range extension system for LHAASO WCDA-1

Authors :
F. Aharonian
Q. An
null Axikegu
L. X. Bai
Y. X. Bai
Y. W. Bao
D. Bastieri
X. J. Bi
Y. J. Bi
H. Cai
J. T. Cai
Z. Cao
J. Chang
J. F. Chang
X. C. Chang
B. M. Chen
J. Chen
L. Chen
M. J. Chen
M. L. Chen
Q. H. Chen
S. H. Chen
S. Z. Chen
T. L. Chen
X. L. Chen
Y. Chen
N. Cheng
Y. D. Cheng
S. W. Cui
X. H. Cui
Y. D. Cui
B. Z. Dai
H. L. Dai
Z. G. Dai
null Danzengluobu
D. della Volpe
B. D’Ettorre Piazzoli
X. J. Dong
J. H. Fan
Y. Z. Fan
Z. X. Fan
J. Fang
K. Fang
C. F. Feng
L. Feng
S. H. Feng
Y. L. Feng
B. Gao
C. D. Gao
Q. Gao
W. Gao
M. M. Ge
L. S. Geng
G. H. Gong
Q. B. Gou
M. H. Gu
J. G. Guo
X. L. Guo
Y. Q. Guo
Y. Y. Guo
Y. A. Han
H. H. He
H. N. He
J. C. He
S. L. He
X. B. He
Y. He
M. Heller
Y. K. Hor
C. Hou
X. Hou
H. B. Hu
S. Hu
S. C. Hu
X. J. Hu
D. H. Huang
Q. L. Huang
W. H. Huang
X. T. Huang
Y. Huang
Z. C. Huang
F. Ji
X. L. Ji
H. Y. Jia
K. Jiang
Z. J. Jiang
C. Jin
D. Kuleshov
K. Levochkin
B. B. Li
C. Li
F. Li
H. B. Li
H. C. Li
H. Y. Li
J. Li
K. Li
W. L. Li
X. Li
X. R. Li
Y. Li
Y. Z. Li
Z. Li
E. W. Liang
Y. F. Liang
S. J. Lin
B. Liu
C. Liu
D. Liu
H. Liu
H. D. Liu
J. Liu
J. L. Liu
J. S. Liu
J. Y. Liu
M. Y. Liu
R. Y. Liu
S. M. Liu
W. Liu
Y. N. Liu
Z. X. Liu
W. J. Long
R. Lu
H. K. Lv
B. Q. Ma
L. L. Ma
X. H. Ma
J. R. Mao
A. Masood
W. Mitthumsiri
T. Montaruli
Y. C. Nan
B. Y. Pang
P. Pattarakijwanich
Z. Y. Pei
M. Y. Qi
D. Ruffolo
V. Rulev
A. Sáiz
L. Shao
O. Shchegolev
X. D. Sheng
J. R. Shi
H. C. Song
Yu. V. Stenkin
V. Stepanov
Q. N. Sun
X. N. Sun
Z. B. Sun
P. H. T. Tam
Z. B. Tang
W. W. Tian
B. D. Wang
C. Wang
H. Wang
H. G. Wang
J. C. Wang
J. S. Wang
L. P. Wang
L. Y. Wang
R. N. Wang
W. Wang
X. G. Wang
X. J. Wang
X. Y. Wang
Y. D. Wang
Y. J. Wang
Y. P. Wang
Z. Wang
Z. H. Wang
Z. X. Wang
D. M. Wei
J. J. Wei
Y. J. Wei
T. Wen
C. Y. Wu
H. R. Wu
S. Wu
W. X. Wu
X. F. Wu
S. Q. Xi
J. Xia
J. J. Xia
G. M. Xiang
G. Xiao
H. B. Xiao
G. G. Xin
Y. L. Xin
Y. Xing
D. L. Xu
R. X. Xu
L. Xue
D. H. Yan
C. W. Yang
F. F. Yang
J. Y. Yang
L. L. Yang
M. J. Yang
R. Z. Yang
S. B. Yang
Y. H. Yao
Z. G. Yao
Y. M. Ye
L. Q. Yin
N. Yin
X. H. You
Z. Y. You
Y. H. Yu
Q. Yuan
H. D. Zeng
T. X. Zeng
W. Zeng
Z. K. Zeng
M. Zha
X. X. Zhai
B. B. Zhang
H. M. Zhang
H. Y. Zhang
J. L. Zhang
J. W. Zhang
L. Zhang
L. X. Zhang
P. F. Zhang
P. P. Zhang
R. Zhang
S. R. Zhang
S. S. Zhang
X. Zhang
X. P. Zhang
Y. Zhang
Y. F. Zhang
Y. L. Zhang
B. Zhao
J. Zhao
L. Zhao
L. Z. Zhao
S. P. Zhao
F. Zheng
Y. Zheng
B. Zhou
H. Zhou
J. N. Zhou
P. Zhou
R. Zhou
X. X. Zhou
C. G. Zhu
F. R. Zhu
H. Zhu
K. J. Zhu
X. Zuo
Source :
Radiation Detection Technology and Methods. 5:520-530
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV. To observe high-energy shower events, especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV, a dynamic range extension system (WCDA++) is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1. The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events, which is an important parameter for identifying the composition of primary particles. The system has been running for more than one year. In this paper, the details of the design and performance of WCDA++ are presented.

Details

ISSN :
25099949 and 25099930
Volume :
5
Database :
OpenAIRE
Journal :
Radiation Detection Technology and Methods
Accession number :
edsair.doi...........f5b7d266fd7e51ba615631a5bf905b58
Full Text :
https://doi.org/10.1007/s41605-021-00275-4