Back to Search Start Over

Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy

Authors :
Runzhang Xu
Qiang Lin
Xueteng Tian
Meina Zhang
Source :
Discrete & Continuous Dynamical Systems - S. 13:2095-2107
Publication Year :
2020
Publisher :
American Institute of Mathematical Sciences (AIMS), 2020.

Abstract

In this paper, we study blow up and blow up time of solutions for initial boundary value problem of Kirchhoff-type wave equations involving the fractional Laplacian \begin{document}$\left\{ \begin{align} & {{u}_{tt}}+[u]_{s}^{2(\theta -1)}{{(-\Delta )}^{s}}u=f(u),\ \ \ \ \text{in}\ \Omega \times {{\mathbb{R}}^{+}}, \\ & u(x,0)={{u}_{0}},\ \ {{u}_{t}}(x,0)={{u}_{1}},\ \ \ \ \ \ \text{in}\ \Omega , \\ & u=0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{in}\ ({{\mathbb{R}}^{N}}\backslash \Omega )\times \mathbb{R}_{0}^{+}, \\ \end{align} \right.$\end{document} where \begin{document}$ [u]_s $\end{document} is the Gagliardo seminorm of \begin{document}$ u $\end{document} , \begin{document}$ s\in(0, 1) $\end{document} , \begin{document}$ \theta\in[1, 2_s^*/2) $\end{document} with \begin{document}$ 2_s^* = \frac{2N}{N-2s} $\end{document} , \begin{document}$ (-\Delta)^s $\end{document} is the fractional Laplacian operator, \begin{document}$ f(u) $\end{document} is a differential function satisfying certain assumptions, \begin{document}$ \Omega\subset\mathbb{R}^N $\end{document} is a bounded domain with Lipschitz boundary \begin{document}$ \partial \Omega $\end{document} . By introducing a new auxiliary function and an adapted concavity method, we establish some sufficient conditions on initial data such that the solutions blow up in finite time for the arbitrary positive initial energy. Moreover, as \begin{document}$ f(u) = |u|^{p-1}u $\end{document} , we estimate the upper and lower bounds for blow up time with arbitrary positive energy.

Details

ISSN :
19371179
Volume :
13
Database :
OpenAIRE
Journal :
Discrete & Continuous Dynamical Systems - S
Accession number :
edsair.doi...........f5c34c57316669d17e012daa8c34679c
Full Text :
https://doi.org/10.3934/dcdss.2020160