Back to Search Start Over

GORENSTEIN PROJECTIVE OBJECTS IN FUNCTOR CATEGORIES

Authors :
Sondre Kvamme
Source :
Nagoya Mathematical Journal. 240:1-41
Publication Year :
2018
Publisher :
Cambridge University Press (CUP), 2018.

Abstract

Let $k$ be a commutative ring, let ${\mathcal{C}}$ be a small, $k$-linear, Hom-finite, locally bounded category, and let ${\mathcal{B}}$ be a $k$-linear abelian category. We construct a Frobenius exact subcategory ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))$ of the functor category ${\mathcal{B}}^{{\mathcal{C}}}$, and we show that it is a subcategory of the Gorenstein projective objects ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ in ${\mathcal{B}}^{{\mathcal{C}}}$. Furthermore, we obtain criteria for when ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))={\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$. We show in examples that this can be used to compute ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ explicitly.

Details

ISSN :
21526842 and 00277630
Volume :
240
Database :
OpenAIRE
Journal :
Nagoya Mathematical Journal
Accession number :
edsair.doi...........f5fbdf9391c06732ae9a5e2971989e80
Full Text :
https://doi.org/10.1017/nmj.2018.44