Back to Search
Start Over
GORENSTEIN PROJECTIVE OBJECTS IN FUNCTOR CATEGORIES
- Source :
- Nagoya Mathematical Journal. 240:1-41
- Publication Year :
- 2018
- Publisher :
- Cambridge University Press (CUP), 2018.
-
Abstract
- Let $k$ be a commutative ring, let ${\mathcal{C}}$ be a small, $k$-linear, Hom-finite, locally bounded category, and let ${\mathcal{B}}$ be a $k$-linear abelian category. We construct a Frobenius exact subcategory ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))$ of the functor category ${\mathcal{B}}^{{\mathcal{C}}}$, and we show that it is a subcategory of the Gorenstein projective objects ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ in ${\mathcal{B}}^{{\mathcal{C}}}$. Furthermore, we obtain criteria for when ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))={\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$. We show in examples that this can be used to compute ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ explicitly.
Details
- ISSN :
- 21526842 and 00277630
- Volume :
- 240
- Database :
- OpenAIRE
- Journal :
- Nagoya Mathematical Journal
- Accession number :
- edsair.doi...........f5fbdf9391c06732ae9a5e2971989e80
- Full Text :
- https://doi.org/10.1017/nmj.2018.44