Back to Search Start Over

Quantum enigma hidden in continuum mechanics

Authors :
Heng Xiao
Source :
Applied Mathematics and Mechanics. 38:39-56
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

It is reported that there exist deformable media which display quantum effects just as quantum entities do. As such, each quantum entity usually treated as a point particle may be represented by a deformable medium, the dynamic behavior of which is prescribed by four dynamic state variables, including mass density, velocity, internal pressure, and intrinsic angular momentum. In conjunction with the finding of the characteristic equation characterizing the physical nature of such media, it is found that a complex field quantity may be introduced to uncover a perhaps unexpected correlation, i.e., the governing dynamic equations for such media may be exactly reduced to the Schrodinger equation, from which the closed-form solutions for all the four dynamic state variables can be obtained. It turns out that this complex field quantity is just the wavefunction in the Schrodinger equation. Moreover, the dynamic effects peculiar to spin are derivable as direct consequences. It appears that these results provide a missing link in quantum theory, in the sense of disclosing the physical origin and nature of both the wavefunction and the wave equation. Now, the inherent indeterminacy in quantum theory may be rendered irrelevant. The consequences are explained for certain long-standing fundamental issues.

Details

ISSN :
15732754 and 02534827
Volume :
38
Database :
OpenAIRE
Journal :
Applied Mathematics and Mechanics
Accession number :
edsair.doi...........f6ca38d6a28976caffd3600d73128d92
Full Text :
https://doi.org/10.1007/s10483-017-2151-6