Back to Search
Start Over
P.122 Unbiased whole brain circuit interrogation reveals neurons restoring walking after spinal cord injury
- Source :
- Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques. 49:S40-S41
- Publication Year :
- 2022
- Publisher :
- Cambridge University Press (CUP), 2022.
-
Abstract
- Background: There is presently no cure for locomotor deficits after spinal cord injury (SCI). Very few therapies effectively target the brain due to poor understanding of the brain’s role post-SCI. Newly developed tissue clearing techniques have permitted unbiased three-dimensional circuit analysis, opening new opportunities for SCI-related brain interrogation. Methods: We established a novel brain interrogation pipeline by optimizing mouse brain clearing, imaging, and atlas registration. We leveraged a spontaneous recovery lateral hemisection model to analyze whole brain cell activity and connectivity with the lumbar cord using cFos immunolabelling and virus-mediated projection tracing. We identified a functionally and anatomically dynamic region correlating with recovery and interrogated its locomotor role with optogenetics. We assessed deep brain electrical stimulation (DBS) of this region in a more clinically relevant rat contusion SCI using an established bipedal robotic interface. Results: We unexpectedly uncovered the lateral hypothalamus (LH) to functionally and anatomically correlate with recovery. LHVglut2 optogenetic stimulation significantly augmented locomotor function. LH DBS in rats acutely robustly augmented bipedal locomotion post-SCI. Conclusions: This is the first demonstration of the LH’s role in locomotion post-SCI and is a novel DBS target that robustly augmented locomotor function, dependent on LH glutamatergic cells. LH DBS may be a promising intervention in humans.
- Subjects :
- Neurology
Neurology (clinical)
General Medicine
Subjects
Details
- ISSN :
- 20570155 and 03171671
- Volume :
- 49
- Database :
- OpenAIRE
- Journal :
- Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques
- Accession number :
- edsair.doi...........f71667ca6ff0d9903440aa82f0674152
- Full Text :
- https://doi.org/10.1017/cjn.2022.214