Back to Search Start Over

Development of High Quantum Efficiency Strained Superlattice Spin Polarized Photocathodes Via Metal Organic Chemical Vapor Deposition

Authors :
Belfore, Benjamin
Publication Year :
2022
Publisher :
Old Dominion University Libraries, 2022.

Abstract

pin polarized photocathodes are necessary to examine parity violations and other fundamental phenomena in the field of high energy physics. To create these devices, expensive and complicated growth processes are necessary. While integral to accelerator physics, spin polarized electrons could have other exciting applications in materials science and other fields of physics. In order to explore these other applications feasibly, the relative supply of spin polarized photocathodes with a high rate of both polarization and photoemission needs to be increased. One such way to increase this supply is to develop the means to grow them faster and at a larger scale. Because most photocathodes are grown in slow, small-scale processes like Molecular Beam Epitaxy, an alternative needed to be found. In the following work, strained superlattice photocathodes were fabricated using metal organic vapor phase epitaxy. Using this growth process, we demonstrated that it is possible to create high quality photocathodes at a higher rate while maintaining a high quality of polarization and quantum efficiency, thus allowing for the exploration of other applications for these devices.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........f7fbe7b0cd1e8e01eef208c2e3d63589
Full Text :
https://doi.org/10.25777/cadq-xr27