Back to Search
Start Over
Control Design for Parabolic PDE Systems via T–S Fuzzy Model
- Source :
- IEEE Transactions on Systems, Man, and Cybernetics: Systems. 52:3671-3679
- Publication Year :
- 2022
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2022.
-
Abstract
- In this article, we investigate the parabolic partial differential equations (PDEs) systems with Neumann boundary conditions via the Takagi-Sugeno (T-S) fuzzy model. On the basis of the obtained T-S fuzzy PDE model, a novel fuzzy state controller which is associated with the boundary state of position and the mean value coefficient matrix derived through the mean value theorem of integral is designed to analyze the asymptotic stability of the parabolic PDE system. Without sampling the nonlinear parameter of the system, new stability conditions are deduced in the form of linear matrix inequalities (LMIs). Moreover, compared with the novel fuzzy state controller, more conservative conditions based on another fuzzy state controller are also provided. Finally, we explore the state-feedback controller into the Fisher equation as an application. Simulation results show that the proposed method is effective.
- Subjects :
- Partial differential equation
Parabolic partial differential equation
Fuzzy logic
Computer Science Applications
Human-Computer Interaction
Nonlinear system
Exponential stability
Control and Systems Engineering
Control theory
Neumann boundary condition
Applied mathematics
Electrical and Electronic Engineering
Coefficient matrix
Software
Mathematics
Subjects
Details
- ISSN :
- 21682232 and 21682216
- Volume :
- 52
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Systems, Man, and Cybernetics: Systems
- Accession number :
- edsair.doi...........f881ad6d0b47d1af860a8cb004ba8a2d
- Full Text :
- https://doi.org/10.1109/tsmc.2021.3071502