Back to Search Start Over

Glue-assisted grinding exfoliation of large-size 2D materials for insulating thermal conduction and large-current-density hydrogen evolution

Authors :
Xiaolong Zou
Junyang Tan
Dashuai Wang
Heming Liu
Heyuan Zhou
Minsu Liu
Junhao Lin
Bilu Liu
Hui-Ming Cheng
Ling Qiu
L. X. Yang
Qiangmin Yu
Zhongyue Wang
Jingyun Wang
Source :
Materials Today. 51:145-154
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Two-dimensional (2D) materials have many promising applications, but their scalable production remains challenging. Herein, we develop a glue-assisted grinding exfoliation (GAGE) method in which the adhesive polymer acts as a glue to massively produce 2D materials with large lateral sizes, high quality, and high yield. Density functional theory simulation shows that the exfoliation mechanism involves the competition between the binding energy of selected polymers and the 2D materials which is larger than the exfoliation energy of the layered materials. Taking h-BN as an example, the GAGE produces 2D h-BN with an average lateral size of 2.18 μm and thickness of 3.91 nm. The method is also extended to produce various other 2D materials, including graphene, MoS2, WS2, Bi2O2Se, mica, vermiculite, and montmorillonite. Two representative applications of thus-produced 2D materials have been demonstrated, including 2D h-BN/polymer composites for insulating thermal conduction and 2D MoS2-based electrocatalysts for large-current-density hydrogen evolution, indicating the great potential of massively produced 2D materials.

Details

ISSN :
13697021
Volume :
51
Database :
OpenAIRE
Journal :
Materials Today
Accession number :
edsair.doi...........faa8dd344483a0f657fb76b4a55eb2f2
Full Text :
https://doi.org/10.1016/j.mattod.2021.08.009